Littérature scientifique sur le sujet « Chaotic behavior in systems »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Chaotic behavior in systems ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Chaotic behavior in systems"

1

HOLDEN, ARUN V., and MAX J. LAB. "Chaotic Behavior in Excitable Systems." Annals of the New York Academy of Sciences 591, no. 1 Mathematical (June 1990): 303–15. http://dx.doi.org/10.1111/j.1749-6632.1990.tb15097.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Alfaro, Miguel D., and Juan M. Sepulveda. "Chaotic behavior in manufacturing systems." International Journal of Production Economics 101, no. 1 (May 2006): 150–58. http://dx.doi.org/10.1016/j.ijpe.2005.05.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wu, Xiaomao, and Z. A. Schelly. "Chaotic behavior of chemical systems." Reaction Kinetics and Catalysis Letters 42, no. 2 (September 1990): 303–7. http://dx.doi.org/10.1007/bf02065364.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, Tianyi. "Classification of Chaotic Behaviors in Jerky Dynamical Systems." Complex Systems 30, no. 1 (February 15, 2021): 93–110. http://dx.doi.org/10.25088/complexsystems.30.1.93.

Texte intégral
Résumé :
Differential equations are widely used to model systems that change over time, some of which exhibit chaotic behaviors. This paper proposes two new methods to classify these behaviors that are utilized by a supervised machine learning algorithm. Dissipative chaotic systems, in contrast to conservative chaotic systems, seem to follow a certain visual pattern. Also, the machine learning program written in the Wolfram Language is utilized to classify chaotic behavior with an accuracy around 99.1±1.1%.
Styles APA, Harvard, Vancouver, ISO, etc.
5

YANG, XIAO-SONG, and LEI WANG. "EMERGENT PERIODIC BEHAVIOR IN COUPLED CHAOTIC SYSTEMS." Advances in Complex Systems 09, no. 03 (September 2006): 249–61. http://dx.doi.org/10.1142/s0219525906000793.

Texte intégral
Résumé :
Emergent behavior in interconnected systems (complex systems) is of fundamental significance in natural and engineering sciences. A commonly investigated problem is how complicated dynamics take place in dynamical systems consisting of (often simple) subsystems. It is shown though numerical experiments that emergent order such as periodic behavior can likely take place in coupled chaotic dynamical systems. This is demonstrated for the particular case of coupled chaotic continuous time Hopfield neural networks. In particular, it is shown that when two chaotic Hopfield neural networks are couple
Styles APA, Harvard, Vancouver, ISO, etc.
6

VIANA, R. L., S. E. DE S. PINTO, J. R. R. BARBOSA, and C. GREBOGI. "PSEUDO-DETERMINISTIC CHAOTIC SYSTEMS." International Journal of Bifurcation and Chaos 13, no. 11 (November 2003): 3235–53. http://dx.doi.org/10.1142/s0218127403008636.

Texte intégral
Résumé :
We call a chaotic dynamical system pseudo-deterministic when it does not produce numerical, or pseudo-trajectories that stay close, or shadow chaotic true trajectories, even though the model equations are strictly deterministic. In this case, single chaotic trajectories may not be meaningful, and only statistical predictions, at best, could be drawn on the model, like in a stochastic system. The dynamical reason for this behavior is nonhyperbolicity characterized either by tangencies of stable and unstable manifolds or by the presence of periodic orbits embedded in a chaotic invariant set with
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dewangan, Omprakash. "Machine Learning Approaches for Predicting Chaotic Behavior in Nonlinear Systems." Communications on Applied Nonlinear Analysis 30, no. 3 (December 27, 2023): 01–15. http://dx.doi.org/10.52783/cana.v30.275.

Texte intégral
Résumé :
In many domains, including biology, engineering, physics, and finance, the ability to forecast chaotic behavior is of the utmost importance. Predicting nonlinear systems accurately is a critical task due to their intrinsic sensitivity to initial conditions and lack of apparent patterns. One potential way to address this difficulty is by utilizing machine learning techniques. These methods can help us better understand and manage complex systems that display chaotic dynamics. Complex nonlinear systems, with their great dimensionality, temporal interdependence, and sensitivity to initial conditi
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang, Z., S. Panahi, A. J. M. Khalaf, S. Jafari, and I. Hussain. "Synchronization of chaotic jerk systems." International Journal of Modern Physics B 34, no. 20 (August 5, 2020): 2050189. http://dx.doi.org/10.1142/s0217979220501891.

Texte intégral
Résumé :
Chaotic jerk oscillators belong to the simplest chaotic systems. These systems try to model the behavior of dynamical systems efficiently. Jerk oscillators can be known as the most general systems in science, especially physics. It has been proved that every dynamical system expressed with an ordinary differential equation is able to describe as a jerky system in particular conditions. One of its main topics is investigating the collective behavior of chaotic jerk oscillators in the dynamical network. In this paper, the synchronizability of the identical network of jerk oscillators is examined
Styles APA, Harvard, Vancouver, ISO, etc.
9

Alessio, Francesca, Vittorio Coti Zelati, and Piero Montecchiari. "Chaotic behavior of rapidly oscillating Lagrangian systems." Discrete & Continuous Dynamical Systems - A 10, no. 3 (2004): 687–707. http://dx.doi.org/10.3934/dcds.2004.10.687.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zielinska, Barbara J. A., David Mukamel, Victor Steinberg, and Shmuel Fishman. "Chaotic behavior in externally modulated hydrodynamic systems." Physical Review A 32, no. 1 (July 1, 1985): 702–5. http://dx.doi.org/10.1103/physreva.32.702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Chaotic behavior in systems"

1

Michaels, Alan Jason. "Digital chaotic communications." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/34849.

Texte intégral
Résumé :
This dissertation provides the conceptual development, modeling and simulation, physical implementation, and measured hardware results for a practicable digital coherent chaotic communication system. Such systems are highly desirable for robust communications due to the maximal entropy signal characteristics that satisfy Shannon's ideal noise-like waveform and provide optimal data transmission across a flat communications channel. At the core of the coherent chaotic communications system is a fully digital chaotic circuit, providing an efficiently controllable mechanism that overcomes the trad
Styles APA, Harvard, Vancouver, ISO, etc.
2

Çek, Mehmet Emre Savacı Ferit Acar. "Analysis of observed chaotic data/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/elektronikvehaberlesme/T000493.rar.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Çiftçi, Mahmut. "Channel equalization for chaotic communications systems." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/15464.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Carlu, Mallory. "Instability in high-dimensional chaotic systems." Thesis, University of Aberdeen, 2019. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=240675.

Texte intégral
Résumé :
In this thesis I make extensive use of the Lyapunov analysis formalism to unravel fundamental mechanisms of instability in two different systems : the Kuramoto model of globally coupled phase-oscillators and the Lorenz 96 (L96) atmospheric "toy" model, portraying the evolution of a physical quantity along a latitude circle. I start by introducing the relevant theoretical background, with special attention on the main tools I have been using throughout this work : Lyapunov Exponents (LEs), which quantify the asymptotic growth rates of infinitesimal perturbations in a system, and by extension, its
Styles APA, Harvard, Vancouver, ISO, etc.
5

Reiss, Joshua D. "The analysis of chaotic time series." Diss., Full text available online (restricted access), 2001. http://images.lib.monash.edu.au/ts/theses/reiss.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ghofranih, Jahangir. "Control and estimation of a chaotic system." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29601.

Texte intégral
Résumé :
A class of deterministic nonlinear systems known as ”chaotic” behaves similar to noise-corrupted systems. As a specific example, Duffing equation, a nonlinear oscillator representing the roll dynamics of a vessel, was chosen for the study. State estimation and control of such systems in the presence of measurement noise is the prime goal of this research. A nonlinear estimation suitable for chaotic systems was evaluated against conventional methods based on linear equivalent model, and proved to be very efficient. A state feedback controller and a sliding mode controller were applied to the ch
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cromwell, Jeff B. "Chaotic price dynamics of agricultural commodities." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3625.

Texte intégral
Résumé :
Thesis (Ph. D.)--West Virginia University, 2004.<br>Title from document title page. Document formatted into pages; contains vi, 166 p. : ill. Includes abstract. Includes bibliographical references (p. 142-160).
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lindquist, Roslyn Gay. "The dimension of a chaotic attractor." PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4182.

Texte intégral
Résumé :
Tools to explore chaos are as far away as a personal computer or a pocket calculator. A few lines of simple equations in BASIC produce fantastic graphic displays. In the following computer experiment, the dimension of a strange attractor is found by three algorithms; Shaw's, Grassberger-Procaccia's and Guckenheimer's. The programs were tested on the Henon attractor which has a known fractal dimension. Shaw's and Guckenheimer's algorithms were tested with 1000 data points, and Grassberger's with 100 points, a data set easily handled by a PC in one hour or less using BASIC or any other language
Styles APA, Harvard, Vancouver, ISO, etc.
9

Fleming-Dahl, Arthur. "A chaotic communication system with a receiver estimation engine." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15651.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Akguc, Gursoy Bozkurt. "Chaos in 2D electron waveguides." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts Internaional, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3035928.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Chaotic behavior in systems"

1

Casati, Giulio, ed. Chaotic Behavior in Quantum Systems. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2443-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Marek, Miloš. Chaotic behaviour of deterministic dissipative systems. Cambridge: Cambridge University Press, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Marek, Miloš. Chaotic Behaviour of Deterministic Dissipative Systems. Cambridge [England]: Cambridge University Press, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gitterman, M. The chaotic pendulum. New Jersey: World Scientific, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fabio, Casciati, ed. Dynamic motion, chaotic and stochastic behaviour. Austria: Springer-Verlag, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

1948-, Hsu Sze-Bi, ed. Lectures on chaotic dynamical systems. Providence, R.I: American Mathematical Society, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hoppensteadt, F. C. Analysis and simulation of chaotic systems. New York: Springer-Verlag, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wiggins, Stephen. Chaotic transport in dynamical systems. New York: Springer-Verlag, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Baker, Gregory L. Chaotic dynamics: An introduction. 2nd ed. Cambridge: Cambridge University Press, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

1944-, Gollub J. P., ed. Chaotic dynamics: An introduction. Cambridge [England]: Cambridge University Press, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Chaotic behavior in systems"

1

Hanias, M. P., H. E. Nistazakis, and G. S. Tombras. "Chaotic Behavior of Transistor Circuits." In Understanding Complex Systems, 59–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29329-0_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cervelle, Julien, Alberto Dennunzio, and Enrico Formenti. "Chaotic Behavior of Cellular Automata." In Encyclopedia of Complexity and Systems Science, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-27737-5_65-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cervelle, Julien, Alberto Dennunzio, and Enrico Formenti. "Chaotic Behavior of Cellular Automata." In Encyclopedia of Complexity and Systems Science, 978–89. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_65.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Meyer, H. D. "Chaotic Behavior of Classical Hamiltonian Systems." In Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, 143–57. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3005-6_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Krabs, Werner, and Stefan Pickl. "Chaotic Behavior of Autonomous Time-Discrete Systems." In Dynamical Systems, 149–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13722-8_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Josiński, Henryk, Agnieszka Michalczuk, Adam Świtoński, Romualda Mucha, and Konrad Wojciechowski. "Quantifying Chaotic Behavior in Treadmill Walking." In Intelligent Information and Database Systems, 317–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15705-4_31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wisniewski, Helena S. "Bounds for the Chaotic Behavior of Newton’s Method." In Dynamics of Infinite Dimensional Systems, 481–510. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-86458-2_39.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nishimura, Jun, and Tomohisa Hayakawa. "Chaotic Behavior of Orthogonally Projective Triangle Folding Map." In Analysis and Control of Complex Dynamical Systems, 77–90. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55013-6_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hacinliyan, Avadis Simon, Orhan Ozgur Aybar, Ilknur Kusbeyzi Aybar, Mustafa Kulali, and Seyma Karaduman. "Signals of Chaotic Behavior in Middle Eastern Stock Exchanges." In Chaos and Complex Systems, 353–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33914-1_48.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Biswas, Debabrata, and Tanmoy Banerjee. "Collective Behavior-I: Synchronization in Hyperchaotic Time-Delayed Oscillators Coupled Through a Common Environment." In Time-Delayed Chaotic Dynamical Systems, 57–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70993-2_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Chaotic behavior in systems"

1

Gómez, J. M. G., L. Muñoz, J. Retamosa, R. A. Molina, A. Relaño, and E. Faleiro. "Chaotic Behavior of Nuclear Systems." In Proceedings of the Predeal International Summer School in Nuclear Physics. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770417_0008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

C. de Queiroz, Fernando, Tiago Pereira, Eddie Nijholt, and Dmitry Turaev. "Chaotic Behavior in Diffusively Coupled Systems." In v. 10 n. 1 (2023): CNMAC 2023. SBMAC, 2023. http://dx.doi.org/10.5540/03.2023.010.01.0002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ikeda, Hideo. "Chaotic behavior in complex shop scheduling." In 2012 Joint 6th Intl. Conference on Soft Computing and Intelligent Systems (SCIS) and 13th Intl. Symposium on Advanced Intelligent Systems (ISIS). IEEE, 2012. http://dx.doi.org/10.1109/scis-isis.2012.6505303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Uppal, J. S., Weiping Lu, A. Johnstone, and R. G. Harrison. "Generic Chaotic Behavior of Stimulated Brillouin Scattering." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.oc558.

Texte intégral
Résumé :
We report first evidence of chaotic emission in stimulated Brillouin scattering under cw pump conditions involving a single Stoke and pump signal. Single mode optical fibre is used as the nonlinear medium. First analysis of this fundamental process establishes chaotic dynamics to be prevalent in both the Stokes and transmitted pump signals; existing over a very wide parameter region including that close to the SBS threshold. The interplay of nonlinear dispersion with Brillouin gain is identified as a key mechanism responsible for this behaviour.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Graham, R. "Quantized Chaotic Systems." In Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.thc1.

Texte intégral
Résumé :
Chaos is a typical form of dynamical behavior of classical nonlinear dynamical systems. In conservative Hamiltonian systems with f degrees of freedom chaos appears if the system is not intergrable and in some regions of phase space trajectories are not restricted to f-dimensional smooth manifolds. In dissipative systems chaos in the dynamical steady state appears if the system has a strange attractor in configuration space.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Evans, Allan K. "The long-time behavior of correlation functions in dynamical systems." In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302412.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gu, Pengyun, Steven Dubowsky, and Constantinos Mavroidis. "The Design Implications of Chaotic and Near-Chaotic Vibrations in Machines." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/mech-5849.

Texte intégral
Résumé :
Abstract Accurate performance prediction is key to the design of high performance machines. It is shown here that connection clearance and component flexibility can result in machine dynamic behaviors that are hypersensitive to small variations of system design parameters and operating conditions. These hypersensitivities, which can limit the usefulness of computer dynamic simulations for design, are associated with chaotic and near chaotic behavior. The dynamic behaviors of two systems, an Impact Beam System and a Spatial Slider Crank, are studied. The chaotic vibration of these systems is co
Styles APA, Harvard, Vancouver, ISO, etc.
8

Goldman, Paul, and Agnes Muszynska. "Chaotic Behavior of Rotor/Stator Systems With Rubs." In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-387.

Texte intégral
Résumé :
This paper outlines the dynamic behavior of externally excited rotor/stator systems with occasional, partial rubbing conditions. The observed phenomenon have one major source of a strong nonlinearity: transition from no contact to contact state between mechanical elements, one of which is rotating. This results in variable stiffness and damping, impacting, and intermittent involvement of friction. A new model for such a transition (impact) is developed. In case of the contact between rotating and stationary elements, it correlates the local radial and tangential (“super ball”) effects with glo
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kaloutsakis, G. "Chaotic Behavior of a Self-Replicating Robotic Population." In Topics on Chaotic Systems - Selected Papers from CHAOS 2008 International Conference. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814271349_0020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cull, P. "Linear Fractionals - Simple Models with Chaotic-like Behavior." In COMPUTING ANTICIPATORY SYSTEMS: CASYS 2001 - Fifth International Conference. AIP, 2002. http://dx.doi.org/10.1063/1.1503683.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Chaotic behavior in systems"

1

Narducci, L. M. Instabilities and Chaotic Behavior of Active and Passive Laser Systems. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada153366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bodruzzaman, M., and M. A. Essawy. Chaotic behavior control in fluidized bed systems using artificial neural network. Quarterly progress report, October 1, 1996--December 31, 1996. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/493394.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bodruzzaman, M., and M. A. Essawy. Chaotic behavior control in fluidized bed systems using artificial neural network. Quarterly progress report, April 1, 1996--June 30, 1996. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/410400.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Soloviev, Vladimir, Andrii Bielinskyi, Oleksandr Serdyuk, Victoria Solovieva, and Serhiy Semerikov. Lyapunov Exponents as Indicators of the Stock Market Crashes. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4131.

Texte intégral
Résumé :
The frequent financial critical states that occur in our world, during many centuries have attracted scientists from different areas. The impact of similar fluctuations continues to have a huge impact on the world economy, causing instability in it concerning normal and natural disturbances [1]. The an- ticipation, prediction, and identification of such phenomena remain a huge chal- lenge. To be able to prevent such critical events, we focus our research on the chaotic properties of the stock market indices. During the discussion of the re- cent papers that have been devoted to the chaotic beh
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bodruzzaman, M. Chaotic behavior monitoring & control in fluidized bed systems using artificial neural network. Quarterly progress report, July 1, 1996--September 30, 1996. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/477756.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jen, E., M. Alber, R. Camassa, W. Choi, J. Crutchfield, D. Holm, G. Kovacic, and J. Marsden. Applied mathematics of chaotic systems. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/257451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, Hua O., and Eyad H. Abed. Bifurcation Control of Chaotic Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada454958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Collins, Lee A., and Christopher Ticknor. Chaotic Behavior: Bose-Einstein Condensate in a Disordered Potential. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1129053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Abarbanel, H. D. Topics in Pattern Formation and Chaotic Systems. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada265922.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Geller, Jil T., Sharon E. Borglin, and Boris A. Faybishenko. Experiments and evaluation of chaotic behavior of dripping waterin fracture models. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/900684.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!