Articles de revues sur le sujet « Chia-PET »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Chia-PET ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Liu, Tong, and Zheng Wang. "DeepChIA-PET: Accurately predicting ChIA-PET from Hi-C and ChIP-seq with deep dilated networks." PLOS Computational Biology 19, no. 7 (2023): e1011307. http://dx.doi.org/10.1371/journal.pcbi.1011307.
Texte intégralLi, Sun, Chang, Cai, Hong, and Zhou. "Chromatin Interaction Analysis with Updated ChIA-PET Tool (V3)." Genes 10, no. 7 (2019): 554. http://dx.doi.org/10.3390/genes10070554.
Texte intégralLee, Byoungkoo, Jiahui Wang, Liuyang Cai, et al. "ChIA-PIPE: A fully automated pipeline for comprehensive ChIA-PET data analysis and visualization." Science Advances 6, no. 28 (2020): eaay2078. http://dx.doi.org/10.1126/sciadv.aay2078.
Texte intégralHershey, David. "Don't Just Pet Your Chia." Science Activities: Classroom Projects and Curriculum Ideas 32, no. 2 (1995): 8–12. http://dx.doi.org/10.1080/00368121.1995.10113179.
Texte intégralVardaxis, Ioannis, Finn Drabløs, Morten B. Rye, and Bo Henry Lindqvist. "MACPET: model-based analysis for ChIA-PET." Biostatistics 21, no. 3 (2019): 625–39. http://dx.doi.org/10.1093/biostatistics/kxy084.
Texte intégralSmall, Ernest. "34. Chia – not just a pet." Biodiversity 12, no. 1 (2011): 49–56. http://dx.doi.org/10.1080/14888386.2011.575104.
Texte intégralLi, Guipeng, Yang Chen, Michael P. Snyder, and Michael Q. Zhang. "ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis." Nucleic Acids Research 45, no. 1 (2016): e4-e4. http://dx.doi.org/10.1093/nar/gkw809.
Texte intégralZhang, Jingyao, Huay Mei Poh, Su Qin Peh, et al. "ChIA-PET analysis of transcriptional chromatin interactions." Methods 58, no. 3 (2012): 289–99. http://dx.doi.org/10.1016/j.ymeth.2012.08.009.
Texte intégralHe, Chao, Guipeng Li, Diekidel M. Nadhir, Yang Chen, Xiaowo Wang, and Michael Q. Zhang. "Advances in computational ChIA-PET data analysis." Quantitative Biology 4, no. 3 (2016): 217–25. http://dx.doi.org/10.1007/s40484-016-0080-3.
Texte intégralPhanstiel, Douglas H., Alan P. Boyle, Nastaran Heidari, and Michael P. Snyder. "Mango: a bias-correcting ChIA-PET analysis pipeline." Bioinformatics 31, no. 19 (2015): 3092–98. http://dx.doi.org/10.1093/bioinformatics/btv336.
Texte intégralLou, Shuyuan, and Shili Lin. "An in silico procedure for generating protein-mediated chromatin interaction data and comparison of significant interaction calling methods." PLOS ONE 19, no. 1 (2024): e0287521. http://dx.doi.org/10.1371/journal.pone.0287521.
Texte intégralHuang, Weichun, Mario Medvedovic, Jingwen Zhang, and Liang Niu. "ChIAPoP: a new tool for ChIA-PET data analysis." Nucleic Acids Research 47, no. 7 (2019): e37-e37. http://dx.doi.org/10.1093/nar/gkz062.
Texte intégralCapurso, Dan, Zhonghui Tang, and Yijun Ruan. "Methods for comparative ChIA-PET and Hi-C data analysis." Methods 170 (January 2020): 69–74. http://dx.doi.org/10.1016/j.ymeth.2019.09.019.
Texte intégralChandratre, Khyati. "Abstract A054: Accurate prediction of cohesin-mediated 3D genome organization using 2D chromatin features." Cancer Research 83, no. 11_Supplement (2023): A054. http://dx.doi.org/10.1158/1538-7445.prca2023-a054.
Texte intégralZhang, Henry B., Minji Kim, Jeffrey H. Chuang, and Yijun Ruan. "pyBedGraph: a python package for fast operations on 1D genomic signal tracks." Bioinformatics 36, no. 10 (2020): 3234–35. http://dx.doi.org/10.1093/bioinformatics/btaa061.
Texte intégralOrlov, Y. L., O. Thierry, A. G. Bogomolov, et al. "Computer methods of analysis of chromosome contacts in the cell nucleus based on sequencing technology data." Biomeditsinskaya Khimiya 63, no. 5 (2017): 418–22. http://dx.doi.org/10.18097/pbmc20176305418.
Texte intégralLi, Guoliang, Melissa J. Fullwood, Han Xu, et al. "ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing." Genome Biology 11, no. 2 (2010): R22. http://dx.doi.org/10.1186/gb-2010-11-2-r22.
Texte intégralBuisine, Nicolas, Xiaoan Ruan, Yijun Ruan, and Laurent M. Sachs. "Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues." Cold Spring Harbor Protocols 2018, no. 8 (2018): pdb.prot104620. http://dx.doi.org/10.1101/pdb.prot104620.
Texte intégralFan, Xiucheng. "The Role of Transcription Factor Tfii-I/GTF2I in the Response to Cellular Stress in Hematopoietic Cells." Blood 124, no. 21 (2014): 2915. http://dx.doi.org/10.1182/blood.v124.21.2915.2915.
Texte intégralKrismer, Konstantin, Yuchun Guo, and David K. Gifford. "IDR2D identifies reproducible genomic interactions." Nucleic Acids Research 48, no. 6 (2020): e31-e31. http://dx.doi.org/10.1093/nar/gkaa030.
Texte intégralLi, Xingwang, Oscar Junhong Luo, Ping Wang, et al. "Long-read ChIA-PET for base-pair-resolution mapping of haplotype-specific chromatin interactions." Nature Protocols 12, no. 5 (2017): 899–915. http://dx.doi.org/10.1038/nprot.2017.012.
Texte intégralPaulsen, Jonas, Einar A. Rødland, Lars Holden, Marit Holden, and Eivind Hovig. "A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions." Nucleic Acids Research 42, no. 18 (2014): e143-e143. http://dx.doi.org/10.1093/nar/gku738.
Texte intégralLun, Aaron T. L., Malcolm Perry, and Elizabeth Ing-Simmons. "Infrastructure for genomic interactions: Bioconductor classes for Hi-C, ChIA-PET and related experiments." F1000Research 5 (May 20, 2016): 950. http://dx.doi.org/10.12688/f1000research.8759.1.
Texte intégralLun, Aaron T. L., Malcolm Perry, and Elizabeth Ing-Simmons. "Infrastructure for genomic interactions: Bioconductor classes for Hi-C, ChIA-PET and related experiments." F1000Research 5 (June 28, 2016): 950. http://dx.doi.org/10.12688/f1000research.8759.2.
Texte intégralBuisine, Nicolas, Xiaoan Ruan, Yijun Ruan, and Laurent M. Sachs. "Chromatin Immunoprecipitation for Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues." Cold Spring Harbor Protocols 2018, no. 8 (2018): pdb.prot097725. http://dx.doi.org/10.1101/pdb.prot097725.
Texte intégralKulakova, Ekaterina, Anastasia Spitsina, Anton Bogomolov, et al. "Program for analysis of genome distribution of chromosome contacts in cell nucleus by the data obtained using ChIA-PET and Hi-C technologies." Program Systems: Theory and Applications 8, no. 1 (2017): 219–42. http://dx.doi.org/10.25209/2079-3316-2017-8-1-219-242.
Texte intégralBuisine, Nicolas, Xiaoan Ruan, Yijun Ruan, and Laurent M. Sachs. "Corrigendum: Chromatin Immunoprecipitation for Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues." Cold Spring Harbor Protocols 2020, no. 1 (2020): pdb.corr106765. http://dx.doi.org/10.1101/pdb.corr106765.
Texte intégralKulakova, Ye, A. Spitsina, N. Orlova, et al. "Supercomputer analysis of genomics and transcriptomics data revealed by high-throughput DNA sequencing." Program Systems: Theory and Applications 6, no. 2 (2015): 129–48. http://dx.doi.org/10.25209/2079-3316-2015-6-2-129-148.
Texte intégralBuisine, Nicolas, Xiaoan Ruan, Patrice Bilesimo, et al. "Xenopus tropicalis Genome Re-Scaffolding and Re-Annotation Reach the Resolution Required for In Vivo ChIA-PET Analysis." PLOS ONE 10, no. 9 (2015): e0137526. http://dx.doi.org/10.1371/journal.pone.0137526.
Texte intégralWang, Siguo, Qinhu Zhang, Ying He, et al. "DLoopCaller: A deep learning approach for predicting genome-wide chromatin loops by integrating accessible chromatin landscapes." PLOS Computational Biology 18, no. 10 (2022): e1010572. http://dx.doi.org/10.1371/journal.pcbi.1010572.
Texte intégralMills, Caitlin, Anushya Muruganujan, Dustin Ebert, et al. "PEREGRINE: A genome-wide prediction of enhancer to gene relationships supported by experimental evidence." PLOS ONE 15, no. 12 (2020): e0243791. http://dx.doi.org/10.1371/journal.pone.0243791.
Texte intégralGitto, Sarah B., Austin R. Pantel, Mehran Makvandi, et al. "Abstract 5610: [18F]FluorThanatrace ([18F]FTT) PET Imaging of PARP-inhibitor drug-target engagement as a biomarker of response in ovarian cancer." Cancer Research 83, no. 7_Supplement (2023): 5610. http://dx.doi.org/10.1158/1538-7445.am2023-5610.
Texte intégralYousif, Faris H., Bakhtiar Q. Aziz, and Ezaddin N. Baban. "Subsurface Imaging of the Fatha Formation Utilizing 3D Seismic Data in Chia Surkh Area, Kurdistan Region, Iraq." Iraqi Geological Journal 55, no. 2B (2022): 35–46. http://dx.doi.org/10.46717/igj.55.2b.4ms-2022-08-20.
Texte intégralScala, Giovanni, Francesca Gorini, Susanna Ambrosio, et al. "8-oxodG accumulation within super-enhancers marks fragile CTCF-mediated chromatin loops." Nucleic Acids Research 50, no. 6 (2022): 3292–306. http://dx.doi.org/10.1093/nar/gkac143.
Texte intégralSati, Satish, Parker Jones, Hali S. Kim, Linda A. Zhou, Emmanuel Rapp-Reyes, and Thomas H. Leung. "HiCuT: An efficient and low input method to identify protein-directed chromatin interactions." PLOS Genetics 18, no. 3 (2022): e1010121. http://dx.doi.org/10.1371/journal.pgen.1010121.
Texte intégralWhite, Shannon M., Michael P. Snyder, and Chunling Yi. "Master lineage transcription factors anchor trans mega transcriptional complexes at highly accessible enhancer sites to promote long-range chromatin clustering and transcription of distal target genes." Nucleic Acids Research 49, no. 21 (2021): 12196–210. http://dx.doi.org/10.1093/nar/gkab1105.
Texte intégralWlasnowolski, Michal, Michal Sadowski, Tymon Czarnota, et al. "3D-GNOME 2.0: a three-dimensional genome modeling engine for predicting structural variation-driven alterations of chromatin spatial structure in the human genome." Nucleic Acids Research 48, W1 (2020): W170—W176. http://dx.doi.org/10.1093/nar/gkaa388.
Texte intégralChen, Dijun, Liang-Yu Fu, Zhao Zhang, et al. "Dissecting the chromatin interactome of microRNA genes." Nucleic Acids Research 42, no. 5 (2013): 3028–43. http://dx.doi.org/10.1093/nar/gkt1294.
Texte intégralPande, Amit, Wojciech Makalowski, Jürgen Brosius, and Carsten A. Raabe. "Enhancer occlusion transcripts regulate the activity of human enhancer domains via transcriptional interference: a computational perspective." Nucleic Acids Research 48, no. 7 (2020): 3435–54. http://dx.doi.org/10.1093/nar/gkaa026.
Texte intégralLi, Peng, Suman Mitra, Rosanne Spolski, et al. "STAT5-mediated chromatin interactions in superenhancers activate IL-2 highly inducible genes: Functional dissection of the Il2ra gene locus." Proceedings of the National Academy of Sciences 114, no. 46 (2017): 12111–19. http://dx.doi.org/10.1073/pnas.1714019114.
Texte intégralYu, Longtao, Hengxiang Shen, and Xiaowen Lyu. "Roles of Polycomb Complexes in the Reconstruction of 3D Genome Architecture during Preimplantation Embryonic Development." Genes 13, no. 12 (2022): 2382. http://dx.doi.org/10.3390/genes13122382.
Texte intégralVõ, Tá Đương. "Khốn Thân Tôi, Nếu Tôi Không Loan Báo Tin Mừng". Khoa Học Công Giáo và Đời Sống 4, № 4 (2024): 1–7. https://doi.org/10.54855/csl.24441.
Texte intégralHovenga, Van, and Oluwatosin Oluwadare. "CBCR: A Curriculum Based Strategy For Chromosome Reconstruction." International Journal of Molecular Sciences 22, no. 8 (2021): 4140. http://dx.doi.org/10.3390/ijms22084140.
Texte intégralPyfrom, Sarah, Olivia Koues, Rodney Kowalewski, Eugene M. Oltz, and Jacqueline Payton. "Correlative Recurrent Expression of Predicted Elements (CREPE): A Novel Computational Approach to Predict LncRNA Function." Journal of Immunology 200, no. 1_Supplement (2018): 167.10. http://dx.doi.org/10.4049/jimmunol.200.supp.167.10.
Texte intégralCaudai, Claudia, Monica Zoppè, Anna Tonazzini, Ivan Merelli, and Emanuele Salerno. "Integration of Multiple Resolution Data in 3D Chromatin Reconstruction Using ChromStruct." Biology 10, no. 4 (2021): 338. http://dx.doi.org/10.3390/biology10040338.
Texte intégralShih, Han-Yu, Chunhong Liu, ping wang, et al. "A critical CTCF binding site of the Ifng-Il22 locus specifies cytokine expression and finetunes immune response." Journal of Immunology 206, no. 1_Supplement (2021): 53.13. http://dx.doi.org/10.4049/jimmunol.206.supp.53.13.
Texte intégralZhu, Hao, Tong Liu, and Zheng Wang. "C2c: Predicting Micro-C from Hi-C." Genes 15, no. 6 (2024): 673. http://dx.doi.org/10.3390/genes15060673.
Texte intégralPagin, Miriam, Mattias Pernebrink, Simone Giubbolini, et al. "Sox2 Controls Neural Stem Cell Self-Renewal Through a Fos-Centered Gene Regulatory Network." Stem Cells 39, no. 8 (2021): 1107–19. http://dx.doi.org/10.1002/stem.3373.
Texte intégralArega, Yibeltal, Hao Jiang, Shuangqi Wang, Jingwen Zhang, Xiaohui Niu, and Guoliang Li. "ChIAMM: A Mixture Model for Statistical Analysis of Long-Range Chromatin Interactions From ChIA-PET Experiments." Frontiers in Genetics 11 (December 14, 2020). http://dx.doi.org/10.3389/fgene.2020.616160.
Texte intégral"ChIA-PET Elution Buffer." Cold Spring Harbor Protocols 2018, no. 8 (2018): pdb.rec104851. http://dx.doi.org/10.1101/pdb.rec104851.
Texte intégral