Articles de revues sur le sujet « Chromatin sequencing »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Chromatin sequencing ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Soleimani, Vahab D., Gareth A. Palidwor, Parameswaran Ramachandran, Theodore J. Perkins, and Michael A. Rudnicki. "Chromatin tandem affinity purification sequencing." Nature Protocols 8, no. 8 (2013): 1525–34. http://dx.doi.org/10.1038/nprot.2013.088.
Texte intégralJukam, David, Charles Limouse, Owen K. Smith, Viviana I. Risca, Jason C. Bell, and Aaron F. Straight. "Chromatin‐Associated RNA Sequencing (ChAR‐seq)." Current Protocols in Molecular Biology 126, no. 1 (2019): e87. http://dx.doi.org/10.1002/cpmb.87.
Texte intégralStergachis, Andrew B., Brian M. Debo, Eric Haugen, L. Stirling Churchman, and John A. Stamatoyannopoulos. "Single-molecule regulatory architectures captured by chromatin fiber sequencing." Science 368, no. 6498 (2020): 1449–54. http://dx.doi.org/10.1126/science.aaz1646.
Texte intégralXie, Wenhui, Yilang Ke, Qinyi You, et al. "Single-Cell RNA Sequencing and Assay for Transposase-Accessible Chromatin Using Sequencing Reveals Cellular and Molecular Dynamics of Aortic Aging in Mice." Arteriosclerosis, Thrombosis, and Vascular Biology 42, no. 2 (2022): 156–71. http://dx.doi.org/10.1161/atvbaha.121.316883.
Texte intégralWu, Weixin, Zhangming Yan, Tri C. Nguyen, Zhen Bouman Chen, Shu Chien, and Sheng Zhong. "Mapping RNA–chromatin interactions by sequencing with iMARGI." Nature Protocols 14, no. 11 (2019): 3243–72. http://dx.doi.org/10.1038/s41596-019-0229-4.
Texte intégralGorkin, David U., Iros Barozzi, Yuan Zhao, et al. "An atlas of dynamic chromatin landscapes in mouse fetal development." Nature 583, no. 7818 (2020): 744–51. http://dx.doi.org/10.1038/s41586-020-2093-3.
Texte intégralJahan, Sanzida, Tasnim H. Beacon, Wayne Xu, and James R. Davie. "Atypical chromatin structure of immune-related genes expressed in chicken erythrocytes." Biochemistry and Cell Biology 98, no. 2 (2020): 171–77. http://dx.doi.org/10.1139/bcb-2019-0107.
Texte intégralGuo, Ziwei, Xinhong Liu, and Mo Chen. "Defining pervasive transcription units using chromatin RNA-sequencing data." STAR Protocols 3, no. 2 (2022): 101442. http://dx.doi.org/10.1016/j.xpro.2022.101442.
Texte intégralVega, Vinsensius B., Edwin Cheung, Nallasivam Palanisamy, and Wing-Kin Sung. "Inherent Signals in Sequencing-Based Chromatin-ImmunoPrecipitation Control Libraries." PLoS ONE 4, no. 4 (2009): e5241. http://dx.doi.org/10.1371/journal.pone.0005241.
Texte intégralBright, Ann Rose, and Gert Jan C. Veenstra. "Assay for Transposase-Accessible Chromatin-Sequencing Using Xenopus Embryos." Cold Spring Harbor Protocols 2019, no. 1 (2018): pdb.prot098327. http://dx.doi.org/10.1101/pdb.prot098327.
Texte intégralRomanowska, Julia, and Anagha Joshi. "From Genotype to Phenotype: Through Chromatin." Genes 10, no. 2 (2019): 76. http://dx.doi.org/10.3390/genes10020076.
Texte intégralMarr, Luke T., Prasoon Jaya, Laxmi N. Mishra, and Jeffrey J. Hayes. "Whole-genome methods to define DNA and histone accessibility and long-range interactions in chromatin." Biochemical Society Transactions 50, no. 1 (2022): 199–212. http://dx.doi.org/10.1042/bst20210959.
Texte intégralLi, Niannian, Kairang Jin, Yanmin Bai, Haifeng Fu, Lin Liu, and Bin Liu. "Tn5 Transposase Applied in Genomics Research." International Journal of Molecular Sciences 21, no. 21 (2020): 8329. http://dx.doi.org/10.3390/ijms21218329.
Texte intégralFittipaldi, Raffaella, and Giuseppina Caretti. "Tackling Skeletal Muscle Cells Epigenome in the Next-Generation Sequencing Era." Comparative and Functional Genomics 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/979168.
Texte intégralMurdoch, Brenda M., Kimberly M. Davenport, Shangqian Xie, et al. "378 Characterizing Functional Genetic Regulatory Elements in Sheep Reference Genome." Journal of Animal Science 100, Supplement_3 (2022): 185. http://dx.doi.org/10.1093/jas/skac247.340.
Texte intégralBuisine, Nicolas, Xiaoan Ruan, Yijun Ruan, and Laurent M. Sachs. "Chromatin Immunoprecipitation for Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues." Cold Spring Harbor Protocols 2018, no. 8 (2018): pdb.prot097725. http://dx.doi.org/10.1101/pdb.prot097725.
Texte intégralSoyer, Jessica L., Mareike Möller, Klaas Schotanus, et al. "Chromatin analyses of Zymoseptoria tritici : Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq)." Fungal Genetics and Biology 79 (June 2015): 63–70. http://dx.doi.org/10.1016/j.fgb.2015.03.006.
Texte intégralEagen, Kyle P., Erez Lieberman Aiden, and Roger D. Kornberg. "Polycomb-mediated chromatin loops revealed by a subkilobase-resolution chromatin interaction map." Proceedings of the National Academy of Sciences 114, no. 33 (2017): 8764–69. http://dx.doi.org/10.1073/pnas.1701291114.
Texte intégralBaumgarten, Sebastian, and Jessica Bryant. "Chromatin structure can introduce systematic biases in genome-wide analyses of Plasmodium falciparum." Open Research Europe 2 (September 15, 2022): 75. http://dx.doi.org/10.12688/openreseurope.14836.2.
Texte intégralBaumgarten, Sebastian, and Jessica Bryant. "Chromatin structure can introduce systematic biases in genome-wide analyses of Plasmodium falciparum." Open Research Europe 2 (June 10, 2022): 75. http://dx.doi.org/10.12688/openreseurope.14836.1.
Texte intégralLi, Wangchun, U. Tim Wu, Yu Cheng, et al. "Epigenetic Application of ATAC-Seq Based on Tn5 Transposase Purification Technology." Genetics Research 2022 (August 11, 2022): 1–9. http://dx.doi.org/10.1155/2022/8429207.
Texte intégralShah, Anjali. "Chromatin immunoprecipitation sequencing (ChIP-Seq) on the SOLiD™ system." Nature Methods 6, no. 4 (2009): ii—iii. http://dx.doi.org/10.1038/nmeth.f.247.
Texte intégralGoren, Alon, Fatih Ozsolak, Noam Shoresh, et al. "Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA." Nature Methods 7, no. 1 (2009): 47–49. http://dx.doi.org/10.1038/nmeth.1404.
Texte intégralXing, Qiao Rui, Chadi A. El Farran, Ying Ying Zeng, et al. "Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility." Genome Research 30, no. 7 (2020): 1027–39. http://dx.doi.org/10.1101/gr.257840.119.
Texte intégralMittal, Chitvan, Melissa J. Blacketer, and Michael A. Shogren-Knaak. "Nucleosome acetylation sequencing to study the establishment of chromatin acetylation." Analytical Biochemistry 457 (July 2014): 51–58. http://dx.doi.org/10.1016/j.ab.2014.04.024.
Texte intégralMolitor, Jana, Jan-Philipp Mallm, Karsten Rippe, and Fabian Erdel. "Retrieving Chromatin Patterns from Deep Sequencing Data Using Correlation Functions." Biophysical Journal 112, no. 3 (2017): 473–90. http://dx.doi.org/10.1016/j.bpj.2017.01.001.
Texte intégralEapen, Amy A., Sreeja Parameswaran, Carmy Forney, et al. "Epigenetic and transcriptional dysregulation in CD4+ T cells in patients with atopic dermatitis." PLOS Genetics 18, no. 5 (2022): e1009973. http://dx.doi.org/10.1371/journal.pgen.1009973.
Texte intégralOh, Kyu Seon, Jisu Ha, Songjoon Baek, and Myong-Hee Sung. "XL-DNase-seq: Improved footprinting of dynamic transcription factors." Journal of Immunology 202, no. 1_Supplement (2019): 125.17. http://dx.doi.org/10.4049/jimmunol.202.supp.125.17.
Texte intégralDas, Akash Chandra, Aidin Foroutan, Brian Qian, Nader Hosseini Naghavi, Kayvan Shabani, and Parisa Shooshtari. "Single-Cell Chromatin Accessibility Data Combined with GWAS Improves Detection of Relevant Cell Types in 59 Complex Phenotypes." International Journal of Molecular Sciences 23, no. 19 (2022): 11456. http://dx.doi.org/10.3390/ijms231911456.
Texte intégralMiao, Feng, Zhuo Chen, Lingxiao Zhang, et al. "RNA-sequencing analysis of high glucose-treated monocytes reveals novel transcriptome signatures and associated epigenetic profiles." Physiological Genomics 45, no. 7 (2013): 287–99. http://dx.doi.org/10.1152/physiolgenomics.00001.2013.
Texte intégralAmbrosini, Giovanna, René Dreos, and Philipp Bucher. "Principles of ChIP-seq Data Analysis Illustrated with Examples." Genomics and Computational Biology 1, no. 1 (2015): 22. http://dx.doi.org/10.18547/gcb.2015.vol1.iss1.e22.
Texte intégralTang, Lili, Meng Wang, Changbing Shen, et al. "Assay for Transposase-Accessible Chromatin Using Sequencing Analysis Reveals a Widespread Increase in Chromatin Accessibility in Psoriasis." Journal of Investigative Dermatology 141, no. 7 (2021): 1745–53. http://dx.doi.org/10.1016/j.jid.2020.12.031.
Texte intégralBuisine, Nicolas, Xiaoan Ruan, Yijun Ruan, and Laurent M. Sachs. "Corrigendum: Chromatin Immunoprecipitation for Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues." Cold Spring Harbor Protocols 2020, no. 1 (2020): pdb.corr106765. http://dx.doi.org/10.1101/pdb.corr106765.
Texte intégralRanawaka, Buddhini, Milos Tanurdzic, Peter Waterhouse, and Fatima Naim. "An optimised chromatin immunoprecipitation (ChIP) method for starchy leaves of Nicotiana benthamiana to study histone modifications of an allotetraploid plant." Molecular Biology Reports 47, no. 12 (2020): 9499–509. http://dx.doi.org/10.1007/s11033-020-06013-1.
Texte intégralBeacon, Tasnim H., and James R. Davie. "Transcriptionally Active Chromatin—Lessons Learned from the Chicken Erythrocyte Chromatin Fractionation." Cells 10, no. 6 (2021): 1354. http://dx.doi.org/10.3390/cells10061354.
Texte intégralLoh, Christopher, Sung-ho Park, Angela Lee, Ruoxi Yuan, Lionel B. Ivashkiv, and George D. Kalliolias. "TNF-induced inflammatory genes escape repression in fibroblast-like synoviocytes: transcriptomic and epigenomic analysis." Annals of the Rheumatic Diseases 78, no. 9 (2019): 1205–14. http://dx.doi.org/10.1136/annrheumdis-2018-214783.
Texte intégralJia, Lin, Yichen Wang, Cong Wang, et al. "Oplr16 serves as a novel chromatin factor to control stem cell fate by modulating pluripotency-specific chromosomal looping and TET2-mediated DNA demethylation." Nucleic Acids Research 48, no. 7 (2020): 3935–48. http://dx.doi.org/10.1093/nar/gkaa097.
Texte intégralKoenning, Matthias, Xianlong Wang, Menuka Karki, et al. "Neuronal SETD2 activity links microtubule methylation to an anxiety-like phenotype in mice." Brain 144, no. 8 (2021): 2527–40. http://dx.doi.org/10.1093/brain/awab200.
Texte intégralFernandes, Sunjay Jude, Matilda Ericsson, Mohsen Khademi, et al. "Deep characterization of paired chromatin and transcriptomes in four immune cell types from multiple sclerosis patients." Epigenomics 13, no. 20 (2021): 1607–18. http://dx.doi.org/10.2217/epi-2021-0205.
Texte intégralOtt, Christopher J., Raphael Szalat, Matthew Lawlor, et al. "Chromatin Accessibility Profiling Reveals Cis-Regulatory Heterogeneity and Novel Transcription Factor Dependencies in Multiple Myeloma." Blood 132, Supplement 1 (2018): 1313. http://dx.doi.org/10.1182/blood-2018-99-119941.
Texte intégralTolstorukov, Michael Y., Peter V. Kharchenko, and Peter J. Park. "Analysis of the primary structure of chromatin with next-generation sequencing." Epigenomics 2, no. 2 (2010): 187–97. http://dx.doi.org/10.2217/epi.09.48.
Texte intégralYang, Chia-Chun, Michael J. Buck, Min-Hsuan Chen, et al. "Discovering chromatin motifs using FAIRE sequencing and the human diploid genome." BMC Genomics 14, no. 1 (2013): 310. http://dx.doi.org/10.1186/1471-2164-14-310.
Texte intégralKu, Wai Lim, Kosuke Nakamura, Weiwu Gao, et al. "Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification." Nature Methods 16, no. 4 (2019): 323–25. http://dx.doi.org/10.1038/s41592-019-0361-7.
Texte intégralFanelli, Mirco, Stefano Amatori, Iros Barozzi, and Saverio Minucci. "Chromatin immunoprecipitation and high-throughput sequencing from paraffin-embedded pathology tissue." Nature Protocols 6, no. 12 (2011): 1905–19. http://dx.doi.org/10.1038/nprot.2011.406.
Texte intégralWills, Andrea E., Rakhi Gupta, Edward Chuong, and Julie C. Baker. "Chromatin immunoprecipitation and deep sequencing in Xenopus tropicalis and Xenopus laevis." Methods 66, no. 3 (2014): 410–21. http://dx.doi.org/10.1016/j.ymeth.2013.09.010.
Texte intégralZhu, Mingda, Jingyang Zhang, Guangyu Li, and Zhenzhen Liu. "ELOVL2-AS1 inhibits migration of triple negative breast cancer." PeerJ 10 (April 14, 2022): e13264. http://dx.doi.org/10.7717/peerj.13264.
Texte intégralKraus, Lindsay, and Brianna Beavens. "The Current Therapeutic Role of Chromatin Remodeling for the Prognosis and Treatment of Heart Failure." Biomedicines 11, no. 2 (2023): 579. http://dx.doi.org/10.3390/biomedicines11020579.
Texte intégralQuan, Cheng, Jie Ping, Hao Lu, Gangqiao Zhou, and Yiming Lu. "3DSNP 2.0: update and expansion of the noncoding genomic variant annotation database." Nucleic Acids Research 50, no. D1 (2021): D950—D955. http://dx.doi.org/10.1093/nar/gkab1008.
Texte intégralKubalová, Ivona, Amanda Souza Câmara, Petr Cápal, et al. "Helical coiling of metaphase chromatids." Nucleic Acids Research, March 2, 2023. http://dx.doi.org/10.1093/nar/gkad028.
Texte intégralMa, Shaoqian, and Yongyou Zhang. "Profiling chromatin regulatory landscape: insights into the development of ChIP-seq and ATAC-seq." Molecular Biomedicine 1, no. 1 (2020). http://dx.doi.org/10.1186/s43556-020-00009-w.
Texte intégral