Articles de revues sur le sujet « Chromatin sequencing »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Chromatin sequencing ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Gather, Fabian. "Chromatin Immunoprecipitation Sequencing (ChIPseq)." Annals of Anatomy - Anatomischer Anzeiger 260 (June 2025): 152421. https://doi.org/10.1016/j.aanat.2025.152421.
Texte intégralSoleimani, Vahab D., Gareth A. Palidwor, Parameswaran Ramachandran, Theodore J. Perkins, and Michael A. Rudnicki. "Chromatin tandem affinity purification sequencing." Nature Protocols 8, no. 8 (2013): 1525–34. http://dx.doi.org/10.1038/nprot.2013.088.
Texte intégralJukam, David, Charles Limouse, Owen K. Smith, Viviana I. Risca, Jason C. Bell, and Aaron F. Straight. "Chromatin‐Associated RNA Sequencing (ChAR‐seq)." Current Protocols in Molecular Biology 126, no. 1 (2019): e87. http://dx.doi.org/10.1002/cpmb.87.
Texte intégralStergachis, Andrew B., Brian M. Debo, Eric Haugen, L. Stirling Churchman, and John A. Stamatoyannopoulos. "Single-molecule regulatory architectures captured by chromatin fiber sequencing." Science 368, no. 6498 (2020): 1449–54. http://dx.doi.org/10.1126/science.aaz1646.
Texte intégralXie, Wenhui, Yilang Ke, Qinyi You, et al. "Single-Cell RNA Sequencing and Assay for Transposase-Accessible Chromatin Using Sequencing Reveals Cellular and Molecular Dynamics of Aortic Aging in Mice." Arteriosclerosis, Thrombosis, and Vascular Biology 42, no. 2 (2022): 156–71. http://dx.doi.org/10.1161/atvbaha.121.316883.
Texte intégralGorkin, David U., Iros Barozzi, Yuan Zhao, et al. "An atlas of dynamic chromatin landscapes in mouse fetal development." Nature 583, no. 7818 (2020): 744–51. http://dx.doi.org/10.1038/s41586-020-2093-3.
Texte intégralWu, Weixin, Zhangming Yan, Tri C. Nguyen, Zhen Bouman Chen, Shu Chien, and Sheng Zhong. "Mapping RNA–chromatin interactions by sequencing with iMARGI." Nature Protocols 14, no. 11 (2019): 3243–72. http://dx.doi.org/10.1038/s41596-019-0229-4.
Texte intégralJahan, Sanzida, Tasnim H. Beacon, Wayne Xu, and James R. Davie. "Atypical chromatin structure of immune-related genes expressed in chicken erythrocytes." Biochemistry and Cell Biology 98, no. 2 (2020): 171–77. http://dx.doi.org/10.1139/bcb-2019-0107.
Texte intégralHaghani, Viktoria, Aditi Goyal, Alan Zhang, et al. "Improving rigor and reproducibility in chromatin immunoprecipitation assay data analysis workflows with Rocketchip." F1000Research 14 (June 25, 2025): 625. https://doi.org/10.12688/f1000research.164319.1.
Texte intégralMarr, Luke T., Prasoon Jaya, Laxmi N. Mishra, and Jeffrey J. Hayes. "Whole-genome methods to define DNA and histone accessibility and long-range interactions in chromatin." Biochemical Society Transactions 50, no. 1 (2022): 199–212. http://dx.doi.org/10.1042/bst20210959.
Texte intégralLi, Niannian, Kairang Jin, Yanmin Bai, Haifeng Fu, Lin Liu, and Bin Liu. "Tn5 Transposase Applied in Genomics Research." International Journal of Molecular Sciences 21, no. 21 (2020): 8329. http://dx.doi.org/10.3390/ijms21218329.
Texte intégralFittipaldi, Raffaella, and Giuseppina Caretti. "Tackling Skeletal Muscle Cells Epigenome in the Next-Generation Sequencing Era." Comparative and Functional Genomics 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/979168.
Texte intégralMurdoch, Brenda M., Kimberly M. Davenport, Shangqian Xie, et al. "378 Characterizing Functional Genetic Regulatory Elements in Sheep Reference Genome." Journal of Animal Science 100, Supplement_3 (2022): 185. http://dx.doi.org/10.1093/jas/skac247.340.
Texte intégralVasilev, V. A., D. M. Ryabov, A. K. Shaytan, and G. A. Armeev. "Updating nucleosome positions within individual genes using molecular modeling methods and mnase sequencing data." Биофизика 68, no. 5 (2023): 911–19. http://dx.doi.org/10.31857/s0006302923050101.
Texte intégralRomanowska, Julia, and Anagha Joshi. "From Genotype to Phenotype: Through Chromatin." Genes 10, no. 2 (2019): 76. http://dx.doi.org/10.3390/genes10020076.
Texte intégralGuo, Ziwei, Xinhong Liu, and Mo Chen. "Defining pervasive transcription units using chromatin RNA-sequencing data." STAR Protocols 3, no. 2 (2022): 101442. http://dx.doi.org/10.1016/j.xpro.2022.101442.
Texte intégralVega, Vinsensius B., Edwin Cheung, Nallasivam Palanisamy, and Wing-Kin Sung. "Inherent Signals in Sequencing-Based Chromatin-ImmunoPrecipitation Control Libraries." PLoS ONE 4, no. 4 (2009): e5241. http://dx.doi.org/10.1371/journal.pone.0005241.
Texte intégralBright, Ann Rose, and Gert Jan C. Veenstra. "Assay for Transposase-Accessible Chromatin-Sequencing Using Xenopus Embryos." Cold Spring Harbor Protocols 2019, no. 1 (2018): pdb.prot098327. http://dx.doi.org/10.1101/pdb.prot098327.
Texte intégralWang, Xilin. "ATAC-seq: A powerful tool for investigating chromatin accessibility and transcription factor binding." Theoretical and Natural Science 6, no. 1 (2023): 316–22. http://dx.doi.org/10.54254/2753-8818/6/20230267.
Texte intégralBaumgarten, Sebastian, and Jessica Bryant. "Chromatin structure can introduce systematic biases in genome-wide analyses of Plasmodium falciparum." Open Research Europe 2 (September 15, 2022): 75. http://dx.doi.org/10.12688/openreseurope.14836.2.
Texte intégralBaumgarten, Sebastian, and Jessica Bryant. "Chromatin structure can introduce systematic biases in genome-wide analyses of Plasmodium falciparum." Open Research Europe 2 (June 10, 2022): 75. http://dx.doi.org/10.12688/openreseurope.14836.1.
Texte intégralStevens, Claire, Leonardo Gonzalez-Smith, Huan Cao, and Suhn K. Rhie. "Abstract 7013: Methyl-Micro-C: simultaneous high-resolution characterization of three-dimensional chromatin structure and the DNA methylome." Cancer Research 84, no. 6_Supplement (2024): 7013. http://dx.doi.org/10.1158/1538-7445.am2024-7013.
Texte intégralReeves, G. Adam, Param Priya Singh, and Anne Brunet. "Chromatin Accessibility Profiling and Data Analysis Using ATAC-seq inNothobranchius furzeri." Cold Spring Harbor Protocols 2024, no. 3 (2023): pdb.prot107747. http://dx.doi.org/10.1101/pdb.prot107747.
Texte intégralEapen, Amy A., Sreeja Parameswaran, Carmy Forney, et al. "Epigenetic and transcriptional dysregulation in CD4+ T cells in patients with atopic dermatitis." PLOS Genetics 18, no. 5 (2022): e1009973. http://dx.doi.org/10.1371/journal.pgen.1009973.
Texte intégralLi, Wangchun, U. Tim Wu, Yu Cheng, et al. "Epigenetic Application of ATAC-Seq Based on Tn5 Transposase Purification Technology." Genetics Research 2022 (August 11, 2022): 1–9. http://dx.doi.org/10.1155/2022/8429207.
Texte intégralOh, Kyu Seon, Jisu Ha, Songjoon Baek, and Myong-Hee Sung. "XL-DNase-seq: Improved footprinting of dynamic transcription factors." Journal of Immunology 202, no. 1_Supplement (2019): 125.17. http://dx.doi.org/10.4049/jimmunol.202.supp.125.17.
Texte intégralVenters, Bryan J., Paul W. Hook, Vishnu S. Kumary, et al. "Abstract 7026: Multi-omic genomic mapping with long read sequencing." Cancer Research 84, no. 6_Supplement (2024): 7026. http://dx.doi.org/10.1158/1538-7445.am2024-7026.
Texte intégralDas, Akash Chandra, Aidin Foroutan, Brian Qian, Nader Hosseini Naghavi, Kayvan Shabani, and Parisa Shooshtari. "Single-Cell Chromatin Accessibility Data Combined with GWAS Improves Detection of Relevant Cell Types in 59 Complex Phenotypes." International Journal of Molecular Sciences 23, no. 19 (2022): 11456. http://dx.doi.org/10.3390/ijms231911456.
Texte intégralKubalová, Ivona, Amanda Souza Câmara, Petr Cápal, et al. "Helical coiling of metaphase chromatids." Nucleic Acids Research, March 2, 2023. http://dx.doi.org/10.1093/nar/gkad028.
Texte intégralMa, Kai, Kaili Yin, Jiong Li, et al. "The Hypothalamic Epigenetic Landscape in Dietary Obesity." Advanced Science, December 20, 2023. http://dx.doi.org/10.1002/advs.202306379.
Texte intégralElise, van Bree, Haring Nina, and Jacobs Frank. "Snakemake pipeline for Chromatin Immunoprecipitation sequencing." March 1, 2019. https://doi.org/10.5281/zenodo.2581325.
Texte intégralSubramanian, Vijayalakshmi V. "Preprint Highlight: Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms." Molecular Biology of the Cell 34, no. 5 (2023). http://dx.doi.org/10.1091/mbc.p23-03-0010.
Texte intégralMa, Shaoqian, and Yongyou Zhang. "Profiling chromatin regulatory landscape: insights into the development of ChIP-seq and ATAC-seq." Molecular Biomedicine 1, no. 1 (2020). http://dx.doi.org/10.1186/s43556-020-00009-w.
Texte intégralLee, Isac, Roham Razaghi, Timothy Gilpatrick, et al. "Methylation and accessibility profiling of GM12878, MCF-10A, MCF-7, and MDA-MB-231 using nanopore sequencing." August 5, 2020. https://doi.org/10.5281/zenodo.3969567.
Texte intégralRen, Zongna, Wanqing Zhao, Dandan Li, et al. "INO80-Dependent Remodeling of Transcriptional Regulatory Network Underlies the Progression of Heart Failure." Circulation, December 28, 2023. http://dx.doi.org/10.1161/circulationaha.123.065440.
Texte intégralLee, Beoung Hun, Zexun Wu, and Suhn K. Rhie. "Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi-C, Micro-C, and promoter capture Micro-C." Epigenetics & Chromatin 15, no. 1 (2022). http://dx.doi.org/10.1186/s13072-022-00473-4.
Texte intégralHolzmann, Johann, Antonio Z. Politi, Kota Nagasaka, et al. "Absolute quantification of cohesin, CTCF and their regulators in human cells." eLife 8 (June 17, 2019). http://dx.doi.org/10.7554/elife.46269.
Texte intégralBell, Jason C., David Jukam, Nicole A. Teran, et al. "Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts." eLife 7 (April 12, 2018). http://dx.doi.org/10.7554/elife.27024.
Texte intégralLi, Mengyao, Zhenhuan Jiang, Xueqiang Xu, et al. "Chromatin accessibility landscape of mouse early embryos revealed by single-cell NanoATAC-seq2." Science 387, no. 6741 (2025). https://doi.org/10.1126/science.adp4319.
Texte intégralKumar, Banushree, Carmen Navarro, Philip Yuk Kwong Yung, et al. "Multiplexed chromatin immunoprecipitation sequencing for quantitative study of histone modifications and chromatin factors." Nature Protocols, October 3, 2024. http://dx.doi.org/10.1038/s41596-024-01058-z.
Texte intégralXi, Xiao-Li, Yi-Dong Yang, Hui-Ling Liu, Jie Jiang, and Bin Wu. "Chromatin accessibility module identified by single-cell sequencing underlies the diagnosis and prognosis of hepatocellular carcinoma." World Journal of Hepatology 17, no. 6 (2025). https://doi.org/10.4254/wjh.v17.i6.107329.
Texte intégralLeduque, Basile, Alejandro Edera, Clémentine Vitte, and Leandro Quadrana. "Simultaneous profiling of chromatin accessibility and DNA methylation in complete plant genomes using long-read sequencing." Nucleic Acids Research, April 27, 2024. http://dx.doi.org/10.1093/nar/gkae306.
Texte intégralZhang, Haowen, Li Song, Xiaotao Wang, et al. "Fast alignment and preprocessing of chromatin profiles with Chromap." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-26865-w.
Texte intégralNakamura, Kosuke, Kosuke Nakamura, Keji Zhao, et al. "A single-cell chromatin immunocleavage sequencing (scChIC-seq)." Protocol Exchange, February 5, 2019. http://dx.doi.org/10.1038/protex.2019.011.
Texte intégralFullwood, Melissa J., Yuyuan Han, Chia‐Lin Wei, Xiaoan Ruan, and Yijun Ruan. "Chromatin Interaction Analysis Using Paired‐End Tag Sequencing." Current Protocols in Molecular Biology 89, no. 1 (2010). http://dx.doi.org/10.1002/0471142727.mb2115s89.
Texte intégralBai, Gali, Namrita Dhillon, Colette Felton, et al. "SMAdd-seq: probing chromatin accessibility with small molecule DNA intercalation and nanopore sequencing." Nucleic Acids Research 53, no. 14 (2025). https://doi.org/10.1093/nar/gkaf671.
Texte intégralLong, Keren, Duo Su, Xiaokai Li, et al. "Identification of enhancers responsible for the coordinated expression of myosin heavy chain isoforms in skeletal muscle." BMC Genomics 23, no. 1 (2022). http://dx.doi.org/10.1186/s12864-022-08737-9.
Texte intégralZhang, Qiqi, Fengli Zhao, Zhe Wu, and Danling Zhu. "A simple and robust method for isolating and analyzing chromatin-bound RNAs in Arabidopsis." Plant Methods 18, no. 1 (2022). http://dx.doi.org/10.1186/s13007-022-00967-y.
Texte intégralShin, Hyun Mu, Gwanghun Kim, Sangjib Kim, et al. "Chromatin accessibility of circulating CD8+ T cells predicts treatment response to PD-1 blockade in patients with gastric cancer." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-21299-w.
Texte intégralSong, Yi, Jieqiang He, Junxing Guo, et al. "The chromatin remodeller MdRAD5B enhances drought tolerance by coupling MdLHP1‐mediated H3K27me3 in apple." Plant Biotechnology Journal, October 24, 2023. http://dx.doi.org/10.1111/pbi.14210.
Texte intégral