Littérature scientifique sur le sujet « Clinical exome sequencing »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Clinical exome sequencing ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Clinical exome sequencing":

1

Gomez, Christopher M., et Soma Das. « Clinical Exome Sequencing ». JAMA Neurology 71, no 10 (1 octobre 2014) : 1215. http://dx.doi.org/10.1001/jamaneurol.2014.2015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Friedman, Jan M., Kenneth Lyons Jones et John C. Carey. « Exome Sequencing and Clinical Diagnosis ». JAMA 324, no 7 (18 août 2020) : 627. http://dx.doi.org/10.1001/jama.2020.11126.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Vilarinho, Sílvia, et Pramod K. Mistry. « Exome Sequencing in Clinical Hepatology ». Hepatology 70, no 6 (29 novembre 2019) : 2185–92. http://dx.doi.org/10.1002/hep.30826.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liu, Pengfei, Linyan Meng, Elizabeth A. Normand, Fan Xia, Xiaofei Song, Andrew Ghazi, Jill Rosenfeld et al. « Reanalysis of Clinical Exome Sequencing Data ». New England Journal of Medicine 380, no 25 (20 juin 2019) : 2478–80. http://dx.doi.org/10.1056/nejmc1812033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Miyatake, Satoko, et Naomichi Matsumoto. « Clinical exome sequencing in neurology practice ». Nature Reviews Neurology 10, no 12 (4 novembre 2014) : 676–78. http://dx.doi.org/10.1038/nrneurol.2014.213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Fogel, Brent L., Saty Satya-Murti et Bruce H. Cohen. « Clinical exome sequencing in neurologic disease ». Neurology : Clinical Practice 6, no 2 (21 mars 2016) : 164–76. http://dx.doi.org/10.1212/cpj.0000000000000239.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sutton, Amelia L. M., et Nathaniel H. Robin. « Clinical application of whole exome sequencing ». Current Opinion in Pediatrics 24, no 6 (décembre 2012) : 663–64. http://dx.doi.org/10.1097/mop.0b013e32835a1996.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Liew, Wendy K. M., Tawfeg Ben-Omran, Basil T. Darras, Sanjay P. Prabhu, Darryl C. De Vivo, Matteo Vatta, Yaping Yang, Christine M. Eng et Wendy K. Chung. « Clinical Application of Whole-Exome Sequencing ». JAMA Neurology 70, no 6 (1 juin 2013) : 788. http://dx.doi.org/10.1001/jamaneurol.2013.247.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Koch, Linda. « Whole-exome sequencing for clinical diagnostics ». Nature Reviews Genetics 17, no 5 (21 mars 2016) : 252. http://dx.doi.org/10.1038/nrg.2016.38.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Biesecker, Leslie G., et Robert C. Green. « Diagnostic Clinical Genome and Exome Sequencing ». New England Journal of Medicine 370, no 25 (19 juin 2014) : 2418–25. http://dx.doi.org/10.1056/nejmra1312543.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Clinical exome sequencing":

1

Andeer, Robin. « Coverage analysis and visualization in clinical exome sequencing ». Thesis, KTH, Skolan för bioteknologi (BIO), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-149941.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Motivation: The advent of clinical exome sequencing will require new tools to handlecoverage data and making it relevant to clinicians. That means genes over targets, smartsoftware over BED-files, and full stack, automated solutions from BAM-files to genetic testreport. Fresh ideas can also provide new insights into the factors that cause certain regionsof the exome to receive poor coverage.Results: A novel coverage analysis tool for analyzing clinical exome sequencing data has beendeveloped. Named Chanjo, it’s capable of converting between different elements such astargets and exons, supports custom annotations, and provides powerful statistics andplotting options. A coverage investigation using Chanjo linked both extreme GC content andlow sequence complexity to poor coverage. High bait density was shown to increasereliability of exome capture but not improve coverage of regions that had already proventricky. To improve coverage of especially very G+C rich regions, developing new ways toamplify rather than enrich DNA will likely make the biggest difference.
2

Sanchis, Juan Alba. « Exome Sequencing in Gastrointestinal Food Allergy Induced by Multiple Food Protein ». Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/134361.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
[ES] Durante las últimas décadas, se han realizado importantes avances en el estudio de las causas genéticas de enfermedades raras y comunes, donde un gran número de variantes han sido identificadas y asociadas a múltiples enfermedades. Con las tecnologías de secuenciación de nueva generación, hoy en día somos capaces de investigar, con un alto rendimiento, la contribución de variantes de alta y baja frecuencia a distintos tipos de enfermedades, permitiéndonos así estudiar su importancia en el desarrollo de las mismas. En ésta tesis se ha utilizado la secuenciación del exoma como tecnología para el estudio de variantes raras en una enfermedad compleja, la alergia gastrointestinal inducida por múltiples alimentos. Para ello, se realizó la secuenciación del exoma completo de una cohorte de 31 individuos (ocho afectados y 23 no afectados) provenientes de siete familias diferentes. Se desarrolló un flujo de trabajo para procesar los datos generados a partir de diferentes librerías e instrumentos de secuenciación, así como un control de calidad exhaustivo con el fin de maximizar el número de variantes de alta calidad. Diferentes tipos de mutaciones fueron investigadas, incluyendo polimorfismos de nucleótido único, inserciones/deleciones, variantes del número de copia y haplotipos HLA, y se realizaron diferentes métodos de filtrado para su interpretación. Finalmente, se encontraron una serie de mutaciones que podrían estar asociadas con la enfermedad y se describe su posible papel en la patogénesis de las alergias gastrointestinales. Los resultados de esta tesis suponen importantes avances en el estudio de la compleja arquitectura genética de las alergias gastrointestinales y abren las puertas a futuras líneas de investigación, que serán necesarias para entender completamente las bases genéticas de esta enfermedad.
[CAT] Durant les últimes dècades, s'han realitzat importants avanços en l'estudi de les causes genètiques de malalties rares i comunes, on un gran nombre de variants han sigut identificades i associades a múltiples malalties. Amb les tecnologies de seqüenciació de nova generació, avui en dia som capaços d'investigar, amb un alt rendiment, la contribució de variants d'alta i baixa freqüència a diferents tipus de malalties, permetent-nos així estudiar la seva importància en el desenvolupament de les mateixes. En aquesta tesis s'ha utilitzat la seqüenciació del exoma com a tecnologia per a l'estudi de variants rares en una malaltia complexa, l'al·lèrgia gastrointestinal induïda per múltiples aliments. Per això, es va realitzar la seqüenciació del exoma complet d'una cohort de 31 individus (vuit afectats i 23 no afectats) provinents de set famílies diferents. Es va desenvolupar un flux de treball per a processar les dades generades a partir de diferents llibreries e instruments de seqüenciació, així com un control de qualitat exhaustiu amb la fi de maximitzar el nombre de variants d'alta qualitat. Diferents tipus de mutacions foren investigades, incloïent polimorfismes de nucleòtid únic, insercions/delecions, variants del nombre de còpia i haplotips HLA, i es realitzaren diferent mètodes de filtrat per a la seva interpretació. Finalment, es trobaren una sèrie de mutacions que podrien estar associades amb la malaltia i es descriu el seu possible paper en la patogènesis de les al·lèrgies gastrointestinals. Els resultats d'aquesta tesis suposen importants avanços en l'estudi de la complexa arquitectura genètica de les al·lèrgies gastrointestinals i obrin les portes a futures línies d'investigació, que seran necessàries per entendre completament les bases genètiques d'aquesta malaltia.
[EN] The study of genetics has been making significant progress towards understanding the causes of rare and common disease during the past decades. Across a wide range of disorders, there have been hundreds of associated loci identified and associated with multiple disorders. Now, with the advent of next-generation sequencing technologies, we are able to interrogate the contribution of high and low frequency variation to disease in a high throughput manner. This provides an opportunity to investigate the role of rare variation in complex disease risk, potentially offering insights into disease pathogenesis and biological mechanisms. In this thesis, it has been assessed the use of whole-exome sequencing technology to investigate the role of rare variation in a complex disease, gastrointestinal food allergy induced by multiple food proteins. For that, a cohort of 31 individuals (eight affected and 23 non-affected) from seven different families was whole exome sequenced. Data obtained from multiple sequencing systems and libraries were analysed, and a workflow was developed, focusing on a comprehensive quality control to maximise the number of real positive calls. Different types of genome variations were investigated, including single nucleotide variants, insertions/deletions, copy number variants and HLA haplotypes. By approaching different methods of variant filtering, a set of rare variants that could be associated with the disease was identified. The possible role of these candidate variants in the pathogenesis of gastrointestinal food allergies was also discussed. These results reveal important insights into the genetic architecture of gastrointestinal food allergies and lead to additional lines of investigation that will be required in order to fully understand the genetic basis of this disease.
Sanchis Juan, A. (2019). Exome Sequencing in Gastrointestinal Food Allergy Induced by Multiple Food Protein [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/134361
TESIS
3

Natarajan, Pradeep. « Association of Clinical Features With Incidental Findings From Exome Sequencing in 3,223 African Americans ». Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:22837738.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Importance. The American College of Medical Genetics and Genomics recommends informing individuals who carry mutations in a set of Mendelian disease genes that might require clinical action regardless of genetic testing indication. However, whether such mutations lead to an increased risk for diseases in individuals not referred for clinical genetic testing has not been evaluated. Objective. To evaluate whether those in the unselected general population who carry potentially actionable mutations are more likely to manifest the associated diseases than those without such mutations. Design, Setting, and Participants. Cross-sectional observational study of participants enrolled in the Jackson Heart Study (Jackson, MS) between 2000 and 2004 who underwent whole exome sequencing (n = 3223). All participants were on African descent. Exposures. Mutations across a set of 56 recommended clinically actionable genes ascertained by whole exome sequencing. Main Outcomes and Measures. Evidence for pathogenicity for all mutations identified in 56 genes was determined by bioinformatic analyses and extensive literature review. Anticipated clinical findings for each of the 56 genes were extracted from study surveys, echocardiography, electrocardiography, and lipid panels across all participants without knowledge of mutation carrier status. The main outcome was the difference in expected clinical findings in those with mutations compared to those without. Results. 3,223 African Americans had a total of 4,429 mutations across the 56 genes. Bioinformatic filters yielded 462 candidate pathogenic variants in 1945 participants (60%). Subsequent manual review of the evidence yielded 30 pathogenic variants in 44 (1.3 %) participants and 12 likely pathogenic variants in 23 (0.7 %). Participants with pathogenic or likely pathogenic variants were more likely to display suggested clinical features (19.6 %) compared with expected (7.1 %; one-sided P = 0.002) by a factor of 2.75 (95% CI , 1.37 to 4.92). In secondary analyses, the excess of observed clinical features was apparent in cardiovascular and cancer genes by 2.67-fold (95% CI, 1.07 to 5.51) and 2.89-fold (95% CI, 0.78 to 7.39), respectively. Conclusions and Relevance. Unselected African Americans in the general population with pathogenic or likely pathogenic variants have an increased risk of displaying features associated with clinical disease.
4

Marangoni, Martina. « Implementation of clinical exome sequencing in prenatal setting : comparing between prospective and retrospective cohort studies ». Doctoral thesis, Universite Libre de Bruxelles, 2021. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/331254.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
\x55\x6c\x74\x72\x61\x73\x6f\x75\x6e\x64\x20\x64\x65\x74\x65\x63\x74\x69\x6f\x6e\x20\x6f\x66\x20\x66\x65\x74\x61\x6c\x20\x61\x62\x6e\x6f\x72\x6d\x61\x6c\x69\x74\x69\x65\x73\x2c\x20\x77\x68\x69\x63\x68\x20\x6f\x63\x63\x75\x72\x20\x69\x6e\x20\x61\x70\x70\x72\x6f\x78\x69\x6d\x61\x74\x65\x6c\x79\x20\x32\x2d\x34\x25\x20\x6f\x66\x20\x70\x72\x65\x67\x6e\x61\x6e\x63\x69\x65\x73\x2c\x20\x69\x73\x20\x61\x6e\x20\x65\x73\x73\x65\x6e\x74\x69\x61\x6c\x20\x70\x61\x72\x74\x20\x6f\x66\x20\x72\x6f\x75\x74\x69\x6e\x65\x20\x6f\x62\x73\x74\x65\x74\x72\x69\x63\x73\x20\x63\x61\x72\x65\x2e\x20\x57\x68\x65\x6e\x20\x66\x65\x74\x61\x6c\x20\x73\x74\x72\x75\x63\x74\x75\x72\x61\x6c\x20\x61\x6e\x6f\x6d\x61\x6c\x69\x65\x73\x20\x61\x72\x65\x20\x73\x75\x73\x70\x65\x63\x74\x65\x64\x2c\x20\x69\x6e\x76\x61\x73\x69\x76\x65\x20\x70\x72\x6f\x63\x65\x64\x75\x72\x65\x73\x20\x28\x69\x2e\x65\x2e\x2c\x20\x61\x6d\x6e\x69\x6f\x63\x65\x6e\x74\x65\x73\x69\x73\x2c\x20\x63\x68\x6f\x72\x69\x6f\x6e\x69\x63\x20\x76\x69\x6c\x6c\x69\x20\x73\x61\x6d\x70\x6c\x69\x6e\x67\x20\x28\x43\x56\x53\x29\x29\x20\x61\x72\x65\x20\x75\x73\x75\x61\x6c\x6c\x79\x20\x6f\x66\x66\x65\x72\x65\x64\x20\x66\x6f\x72\x20\x70\x72\x65\x6e\x61\x74\x61\x6c\x20\x64\x69\x61\x67\x6e\x6f\x73\x69\x73\x2c\x20\x69\x6e\x63\x6c\x75\x64\x69\x6e\x67\x20\x67\x65\x6e\x65\x74\x69\x63\x20\x74\x65\x73\x74\x69\x6e\x67\x2e\x20\x42\x65\x66\x6f\x72\x65\x20\x74\x68\x65\x20\x61\x64\x76\x65\x6e\x74\x20\x6f\x66\x20\x4e\x65\x78\x74\x20\x47\x65\x6e\x65\x72\x61\x74\x69\x6f\x6e\x20\x53\x65\x71\x75\x65\x6e\x63\x69\x6e\x67\x20\x28\x4e\x47\x53\x29\x2c\x20\x67\x65\x6e\x65\x74\x69\x63\x20\x64\x69\x61\x67\x6e\x6f\x73\x69\x73\x20\x72\x65\x6c\x69\x65\x64\x20\x6d\x6f\x73\x74\x6c\x79\x20\x6f\x6e\x20\x69\x64\x65\x6e\x74\x69\x66\x79\x69\x6e\x67\x20\x63\x68\x72\x6f\x6d\x6f\x73\x6f\x6d\x61\x6c\x20\x61\x62\x6e\x6f\x72\x6d\x61\x6c\x69\x74\x69\x65\x73\x20\x28\x75\x73\x69\x6e\x67\x20\x6b\x61\x72\x79\x6f\x74\x79\x70\x65\x20\x74\x65\x73\x74\x69\x6e\x67\x2c\x20\x63\x68\x72\x6f\x6d\x6f\x73\x6f\x6d\x61\x6c\x20\x6d\x69\x63\x72\x6f\x61\x72\x72\x61\x79\x20\x61\x6e\x61\x6c\x79\x73\x69\x73\x20\x28\x43\x4d\x41\x29\x29\x2e\x20\x54\x68\x65\x20\x65\x6e\x63\x6f\x75\x72\x61\x67\x69\x6e\x67\x20\x72\x65\x73\x75\x6c\x74\x73\x20\x6f\x66\x20\x4e\x47\x53\x20\x69\x6e\x20\x63\x6f\x68\x6f\x72\x74\x73\x20\x6f\x66\x20\x6e\x65\x6f\x6e\x61\x74\x65\x73\x20\x61\x6e\x64\x20\x63\x68\x69\x6c\x64\x72\x65\x6e\x20\x64\x69\x73\x70\x6c\x61\x79\x69\x6e\x67\x20\x64\x65\x76\x65\x6c\x6f\x70\x6d\x65\x6e\x74\x61\x6c\x20\x64\x69\x73\x6f\x72\x64\x65\x72\x73\x20\x61\x6e\x64\x2f\x6f\x72\x20\x63\x6f\x6e\x67\x65\x6e\x69\x74\x61\x6c\x20\x61\x6e\x6f\x6d\x61\x6c\x69\x65\x73\x20\x68\x61\x76\x65\x20\x72\x61\x69\x73\x65\x64\x20\x69\x6e\x74\x65\x72\x65\x73\x74\x20\x66\x6f\x72\x20\x69\x74\x73\x20\x61\x70\x70\x72\x6f\x70\x72\x69\x61\x74\x65\x20\x61\x70\x70\x6c\x69\x63\x61\x74\x69\x6f\x6e\x20\x69\x6e\x20\x61\x20\x70\x72\x65\x6e\x61\x74\x61\x6c\x20\x73\x65\x74\x74\x69\x6e\x67\x2e\x20\x54\x68\x69\x73\x20\x50\x68\x44\x20\x70\x72\x6f\x6a\x65\x63\x74\x20\x61\x69\x6d\x73\x20\x74\x6f\x20\x65\x76\x61\x6c\x75\x61\x74\x65\x20\x74\x68\x65\x20\x63\x6c\x69\x6e\x69\x63\x61\x6c\x20\x75\x74\x69\x6c\x69\x74\x79\x20\x6f\x66\x20\x66\x65\x74\x61\x6c\x20\x63\x6c\x69\x6e\x69\x63\x61\x6c\x20\x65\x78\x6f\x6d\x65\x20\x73\x65\x71\x75\x65\x6e\x63\x69\x6e\x67\x20\x28\x66\x43\x45\x53\x29\x20\x69\x6e\x20\x66\x65\x74\x75\x73\x65\x73\x20\x77\x69\x74\x68\x20\x75\x6c\x74\x72\x61\x73\x6f\x75\x6e\x64\x20\x61\x6e\x6f\x6d\x61\x6c\x69\x65\x73\x20\x69\x6e\x20\x77\x68\x69\x63\x68\x20\x63\x68\x72\x6f\x6d\x6f\x73\x6f\x6d\x61\x6c\x20\x61\x62\x6e\x6f\x72\x6d\x61\x6c\x69\x74\x69\x65\x73\x20\x77\x65\x72\x65\x20\x70\x72\x65\x76\x69\x6f\x75\x73\x6c\x79\x20\x65\x78\x63\x6c\x75\x64\x65\x64\x20\x62\x79\x20\x51\x46\x2d\x50\x43\x52\x20\x28\x51\x75\x61\x6e\x74\x69\x74\x61\x74\x69\x76\x65\x20\x46\x6c\x75\x6f\x72\x65\x73\x63\x65\x6e\x74\x02\x50\x6f\x6c\x79\x6d\x65\x72\x61\x73\x65\x20\x43\x68\x61\x69\x6e\x20\x52\x65\x61\x63\x74\x69\x6f\x6e\x29\x20\x61\x6e\x64\x20\x43\x4d\x41\x2e\x20\x54\x68\x69\x73\x20\x77\x6f\x72\x6b\x20\x61\x69\x6d\x73\x20\x74\x6f\x20\x63\x6f\x6e\x74\x72\x69\x62\x75\x74\x65\x20\x74\x6f\x20\x74\x68\x65\x20\x69\x6d\x70\x6c\x65\x6d\x65\x6e\x74\x61\x74\x69\x6f\x6e\x20\x6f\x66\x20\x67\x65\x6e\x6f\x6d\x65\x2d\x77\x69\x64\x65\x20\x73\x65\x71\x75\x65\x6e\x63\x69\x6e\x67\x20\x6d\x65\x74\x68\x6f\x64\x73\x20\x69\x6e\x20\x72\x6f\x75\x74\x69\x6e\x65\x20\x70\x72\x65\x6e\x61\x74\x61\x6c\x20\x63\x61\x72\x65\x20\x61\x6e\x64\x2c\x20\x61\x73\x20\x74\x68\x65\x20\x61\x6e\x61\x6c\x79\x73\x65\x73\x20\x77\x65\x72\x65\x20\x63\x61\x72\x72\x69\x65\x64\x20\x6f\x75\x74\x20\x62\x79\x20\x74\x68\x65\x20\x73\x61\x6d\x65\x20\x63\x65\x6e\x74\x65\x72\x20\x61\x6e\x64\x20\x69\x6e\x20\x74\x68\x65\x20\x73\x61\x6d\x65\x20\x74\x69\x6d\x65\x6c\x69\x6e\x65\x2c\x20\x74\x6f\x20\x70\x72\x6f\x76\x69\x64\x65\x20\x72\x65\x6c\x69\x61\x62\x6c\x65\x20\x69\x6e\x66\x6f\x72\x6d\x61\x74\x69\x6f\x6e\x20\x61\x62\x6f\x75\x74\x20\x74\x68\x65\x20\x64\x69\x66\x66\x65\x72\x65\x6e\x63\x65\x73\x20\x62\x65\x74\x77\x65\x65\x6e\x20\x74\x68\x65\x20\x64\x69\x61\x67\x6e\x6f\x73\x74\x69\x63\x20\x72\x61\x74\x65\x73\x20\x66\x6f\x75\x6e\x64\x20\x69\x6e\x20\x70\x72\x6f\x73\x70\x65\x63\x74\x69\x76\x65\x20\x61\x6e\x64\x20\x72\x65\x74\x72\x6f\x73\x70\x65\x63\x74\x69\x76\x65\x20\x63\x61\x73\x65\x73\x2e\x20\x66\x43\x45\x53\x20\x77\x61\x73\x20\x70\x65\x72\x66\x6f\x72\x6d\x65\x64\x20\x69\x6e\x20\x61\x20\x73\x65\x72\x69\x65\x73\x20\x6f\x66\x20\x33\x30\x33\x20\x70\x72\x65\x67\x6e\x61\x6e\x63\x69\x65\x73\x20\x28\x31\x38\x33\x20\x6f\x6e\x67\x6f\x69\x6e\x67\x20\x61\x6e\x64\x20\x31\x32\x30\x20\x69\x6e\x74\x65\x72\x72\x75\x70\x74\x65\x64\x20\x70\x72\x65\x67\x6e\x61\x6e\x63\x69\x65\x73\x29\x20\x75\x73\x69\x6e\x67\x20\x61\x20\x74\x72\x69\x6f\x2f\x64\x75\x6f\x2d\x62\x61\x73\x65\x64\x20\x61\x6e\x61\x6c\x79\x73\x69\x73\x20\x61\x70\x70\x72\x6f\x61\x63\x68\x2e\x20\x44\x75\x72\x69\x6e\x67\x20\x74\x68\x69\x73\x20\x70\x72\x6f\x6a\x65\x63\x74\x20\x74\x65\x63\x68\x6e\x69\x63\x61\x6c\x20\x64\x65\x76\x65\x6c\x6f\x70\x6d\x65\x6e\x74\x73\x20\x69\x6d\x70\x72\x6f\x76\x65\x64\x20\x73\x69\x67\x6e\x69\x66\x69\x63\x61\x6e\x74\x6c\x79\x20\x74\x68\x65\x20\x74\x75\x72\x6e\x02\x61\x72\x6f\x75\x6e\x64\x2d\x74\x69\x6d\x65\x20\x28\x54\x41\x54\x29\x20\x6f\x66\x20\x66\x43\x45\x53\x20\x61\x6e\x61\x6c\x79\x73\x69\x73\x2c\x20\x61\x6c\x6c\x6f\x77\x69\x6e\x67\x20\x74\x6f\x20\x61\x63\x68\x69\x65\x76\x65\x20\x6f\x75\x72\x20\x67\x6f\x61\x6c\x20\x6f\x66\x20\x64\x65\x76\x65\x6c\x6f\x70\x69\x6e\x67\x20\x61\x20\x66\x61\x73\x74\x20\x6c\x61\x62\x6f\x72\x61\x74\x6f\x72\x79\x20\x70\x72\x6f\x74\x6f\x63\x6f\x6c\x20\x28\x54\x41\x54\x20\x62\x65\x74\x77\x65\x65\x6e\x20\x31\x20\x61\x6e\x64\x20\x32\x20\x6d\x6f\x6e\x74\x68\x73\x29\x20\x66\x69\x74\x74\x69\x6e\x67\x20\x74\x69\x6d\x65\x20\x63\x6f\x6e\x73\x74\x72\x61\x69\x6e\x73\x20\x61\x70\x70\x72\x6f\x70\x72\x69\x61\x74\x65\x20\x66\x6f\x72\x20\x6f\x6e\x67\x6f\x69\x6e\x67\x20\x70\x72\x65\x67\x6e\x61\x6e\x63\x69\x65\x73\x2e\x20\x4f\x75\x72\x20\x61\x70\x70\x72\x6f\x61\x63\x68\x20\x69\x64\x65\x6e\x74\x69\x66\x69\x65\x64\x20\x74\x68\x65\x20\x75\x6e\x64\x65\x72\x6c\x79\x69\x6e\x67\x20\x67\x65\x6e\x65\x74\x69\x63\x20\x63\x61\x75\x73\x65\x20\x69\x6e\x20\x31\x33\x25\x20\x28\x32\x34\x2f\x31\x38\x33\x29\x20\x70\x72\x6f\x73\x70\x65\x63\x74\x69\x76\x65\x20\x28\x6f\x6e\x67\x6f\x69\x6e\x67\x20\x70\x72\x65\x67\x6e\x61\x6e\x63\x69\x65\x73\x29\x20\x61\x6e\x64\x20\x32\x39\x25\x20\x28\x33\x35\x2f\x31\x32\x30\x29\x20\x72\x65\x74\x72\x6f\x73\x70\x65\x63\x74\x69\x76\x65\x20\x63\x61\x73\x65\x73\x20\x28\x69\x6e\x74\x65\x72\x72\x75\x70\x74\x65\x64\x20\x70\x72\x65\x67\x6e\x61\x6e\x63\x69\x65\x73\x29\x2e\x20\x54\x68\x69\x73\x20\x73\x74\x75\x64\x79\x20\x73\x68\x6f\x77\x73\x20\x74\x68\x61\x74\x20\x66\x43\x45\x53\x20\x64\x69\x61\x67\x6e\x6f\x73\x69\x73\x20\x69\x73\x20\x65\x66\x66\x69\x63\x69\x65\x6e\x74\x20\x69\x6e\x20\x66\x65\x74\x75\x73\x65\x73\x20\x70\x72\x65\x73\x65\x6e\x74\x69\x6e\x67\x20\x63\x65\x72\x65\x62\x72\x61\x6c\x2c\x20\x73\x6b\x65\x6c\x65\x74\x61\x6c\x2c\x20\x75\x72\x69\x6e\x61\x72\x79\x2c\x20\x6f\x72\x20\x6d\x75\x6c\x74\x69\x70\x6c\x65\x20\x61\x6e\x6f\x6d\x61\x6c\x69\x65\x73\x2e\x20\x49\x6e\x20\x70\x61\x72\x74\x69\x63\x75\x6c\x61\x72\x2c\x20\x69\x6e\x20\x74\x68\x65\x20\x63\x61\x73\x65\x20\x6f\x66\x20\x73\x70\x65\x63\x69\x66\x69\x63\x20\x66\x65\x74\x61\x6c\x20\x75\x6c\x74\x72\x61\x73\x6f\x75\x6e\x64\x20\x66\x69\x6e\x64\x69\x6e\x67\x73\x20\x28\x65\x2e\x67\x2e\x20\x66\x65\x74\x61\x6c\x20\x61\x6b\x69\x6e\x65\x73\x69\x61\x20\x73\x65\x71\x75\x65\x6e\x63\x65\x2c\x20\x4d\x65\x63\x6b\x65\x6c\x2d\x47\x72\x75\x62\x65\x72\x20\x72\x65\x6c\x61\x74\x65\x64\x20\x70\x68\x65\x6e\x6f\x74\x79\x70\x65\x73\x2c\x20\x61\x6e\x64\x20\x73\x6b\x65\x6c\x65\x74\x61\x6c\x20\x64\x79\x73\x70\x6c\x61\x73\x69\x61\x29\x20\x66\x43\x45\x53\x20\x73\x68\x6f\x75\x6c\x64\x20\x62\x65\x20\x6f\x66\x66\x65\x72\x65\x64\x2e\x20\x4f\x75\x72\x20\x77\x6f\x72\x6b\x20\x61\x6c\x73\x6f\x20\x73\x68\x6f\x77\x73\x20\x74\x68\x61\x74\x20\x74\x72\x69\x6f\x20\x61\x6e\x64\x20\x73\x69\x6d\x70\x6c\x65\x78\x20\x61\x6e\x61\x6c\x79\x73\x69\x73\x20\x61\x72\x65\x20\x63\x6f\x6d\x70\x6c\x65\x6d\x65\x6e\x74\x61\x72\x79\x20\x74\x6f\x20\x61\x63\x68\x69\x65\x76\x65\x20\x74\x68\x65\x20\x68\x69\x67\x68\x65\x73\x74\x20\x64\x69\x61\x67\x6e\x6f\x73\x74\x69\x63\x20\x72\x61\x74\x65\x20\x70\x6f\x73\x73\x69\x62\x6c\x65\x2c\x20\x61\x6e\x64\x20\x74\x68\x61\x74\x20\x72\x65\x63\x65\x73\x73\x69\x76\x65\x20\x68\x65\x74\x65\x72\x6f\x7a\x79\x67\x6f\x75\x73\x20\x63\x6f\x6d\x70\x6f\x75\x6e\x64\x20\x67\x65\x6e\x6f\x74\x79\x70\x65\x73\x20\x61\x72\x65\x20\x6e\x6f\x74\x20\x72\x61\x72\x65\x2e\x20\x46\x75\x72\x74\x68\x65\x72\x6d\x6f\x72\x65\x2c\x20\x6f\x75\x72\x20\x73\x74\x75\x64\x79\x20\x68\x69\x67\x68\x6c\x69\x67\x68\x74\x73\x20\x74\x68\x65\x20\x69\x6d\x70\x6f\x72\x74\x61\x6e\x63\x65\x20\x6f\x66\x20\x70\x72\x6f\x76\x69\x64\x69\x6e\x67\x20\x64\x65\x74\x61\x69\x6c\x65\x64\x20\x70\x68\x65\x6e\x6f\x74\x79\x70\x69\x63\x20\x69\x6e\x66\x6f\x72\x6d\x61\x74\x69\x6f\x6e\x20\x28\x65\x2e\x67\x2e\x20\x75\x6c\x74\x72\x61\x73\x6f\x75\x6e\x64\x20\x73\x63\x61\x6e\x2c\x20\x4d\x52\x49\x2c\x20\x66\x65\x74\x61\x6c\x20\x61\x75\x74\x6f\x70\x73\x79\x29\x20\x74\x6f\x20\x67\x65\x6e\x65\x74\x69\x63\x73\x20\x6c\x61\x62\x6f\x72\x61\x74\x6f\x72\x69\x65\x73\x20\x70\x65\x72\x66\x6f\x72\x6d\x69\x6e\x67\x20\x66\x65\x74\x61\x6c\x20\x4e\x47\x53\x20\x66\x6f\x72\x20\x62\x65\x74\x74\x65\x72\x20\x69\x6e\x74\x65\x72\x70\x72\x65\x74\x61\x74\x69\x6f\x6e\x20\x61\x6e\x64\x20\x72\x65\x70\x6f\x72\x74\x69\x6e\x67\x20\x6f\x66\x20\x67\x65\x6e\x65\x74\x69\x63\x20\x76\x61\x72\x69\x61\x6e\x74\x73\x2c\x20\x61\x6e\x64\x20\x74\x68\x65\x20\x6e\x65\x65\x64\x20\x66\x6f\x72\x20\x65\x78\x70\x61\x6e\x73\x69\x6f\x6e\x20\x6f\x66\x20\x66\x65\x74\x61\x6c\x20\x70\x68\x65\x6e\x6f\x74\x79\x70\x65\x73\x20\x74\x65\x72\x6d\x69\x6e\x6f\x6c\x6f\x67\x79\x20\x69\x6e\x20\x48\x50\x4f\x20\x28\x68\x74\x74\x70\x73\x3a\x2f\x2f\x68\x70\x6f\x2e\x6a\x61\x78\x2e\x6f\x72\x67\x2f\x61\x70\x70\x2f\x29\x2e\x20\x4c\x61\x73\x74\x6c\x79\x2c\x20\x74\x68\x69\x73\x20\x70\x72\x6f\x6a\x65\x63\x74\x20\x63\x6f\x6e\x74\x72\x69\x62\x75\x74\x65\x73\x20\x74\x6f\x20\x73\x68\x61\x72\x65\x20\x74\x68\x65\x20\x74\x65\x63\x68\x6e\x69\x63\x61\x6c\x20\x61\x6e\x64\x20\x69\x6e\x74\x65\x72\x70\x72\x65\x74\x61\x74\x69\x6f\x6e\x20\x63\x68\x61\x6c\x6c\x65\x6e\x67\x65\x73\x20\x66\x61\x63\x65\x64\x20\x64\x75\x72\x69\x6e\x67\x20\x64\x61\x74\x61\x20\x61\x6e\x61\x6c\x79\x73\x69\x73\x20\x6f\x66\x20\x67\x65\x6e\x6f\x6d\x65\x2d\x77\x69\x64\x65\x20\x74\x65\x63\x68\x6e\x69\x71\x75\x65\x73\x2c\x20\x63\x6f\x6e\x74\x72\x69\x62\x75\x74\x69\x6e\x67\x20\x74\x6f\x20\x66\x75\x72\x74\x68\x65\x72\x20\x65\x78\x70\x61\x6e\x64\x69\x6e\x67\x20\x74\x68\x65\x20\x70\x72\x65\x6e\x61\x74\x61\x6c\x20\x70\x72\x65\x73\x65\x6e\x74\x61\x74\x69\x6f\x6e\x20\x6f\x66\x20\x67\x65\x6e\x65\x74\x69\x63\x20\x73\x79\x6e\x64\x72\x6f\x6d\x65\x73\x2e
Doctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
5

Raffan, Eleanor. « Rare syndromes of perturbed insulin action and production : application of exome sequencing and characterisation of their cellular phenotypes ». Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Fisher, Rachel. « Clinical whole exome sequencing in an academic pediatric hospital : A descriptive study of the diagnostic odyssey ». University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1427813369.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Matias, Margret. « Comparison of medical management and genetic counseling options pre- and post-whole exome sequencing for patients with positive and negative results ». University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1490352906282189.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hood, Rebecca. « Molecular and Clinical Delineation of Rare Disorders of Stature ». Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
There are more than 7000 described rare genetic disorders; however, the molecular basis underlying approximately half of these disorders is unknown, and the majority are currently untreatable. Stature and growth abnormalities are a common clinical feature of many rare disorders including: Floating-Harbor syndrome (FHS), a short stature syndrome characterized by delayed osseous maturation, language deficits, and unique dysmorphic facial features; Weaver syndrome, an overgrowth syndrome characterized by advanced osseous maturation, developmental delay, and macrocephaly; and Sotos syndrome with cutis laxa, an overgrowth syndrome with marked tissue laxity in addition to the typical Sotos characteristics of developmental delay, macrocephaly, and a unique facial gestalt. The genetic basis underlying these three rare stature conditions were unknown at the outset of this study. We utilized high-throughput exome sequencing approaches to investigate the molecular etiology of these rare disorders and identified truncating mutations in the final exon of SRCAP as the genetic cause underlying FHS, missense mutations in EZH2 in Weaver syndrome, and novel mutations in the Sotos syndrome gene NSD1 in Sotos syndrome with cutis laxa. Next, we investigated the spectrum of SRCAP mutations in FHS and established the clustering of truncating SRCAP mutations in the final exon as being highly suggestive of a non-haploinsufficiency mutational mechanism in FHS. Finally, global methylation array analysis identified a unique methylation ‘epi-signature’ in FHS individuals, providing further insight into FHS disease mechanism and a diagnostic signature. These studies have delineated the molecular etiology of these three rare stature/growth disorders, furthered our understanding of the associated clinical spectrum, and provided biological insight into disease pathogenesis.
9

Hastings, Rob. « Using 'next-generation' sequencing in the identification of novel causes of inherited heart diseases ». Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:6555e02b-e0e9-4632-9f75-f403dfcc35a3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Next-generation sequencing methods now allow rapid and cost-effective sequencing of DNA on a scale not previously possible. This offers great opportunities for the research of Mendelian disorders, but also significant challenges. The sequencing of exomes, or whole genomes, has emerged as a powerful clinical research tool, with targeted gene analyses generally being preferred in the clinical diagnostic setting. These methods have been employed here with the aim of identifying novel genetic causes of inherited heart disorders and to gain insights into the utility and limitations of these techniques for clinical diagnosis in these disorders. Data produced from the introduction of a targeted multi-gene next-generation sequencing test into clinical practice has been studied. Variation within the mitochondrial genome has been analysed to assess the importance of mitochondrial DNA variants in patients with hypertrophic cardiomyopathy. The m.4300A>G mutation is identified as an important cause of this disorder, with other previously cardiomyopathy-associated and novel variants also identified. Such multi-gene tests can facilitate interpretable and phenotype-relevant results, but at the expense of limiting more extensive data acquisition. Whole-genome sequencing has been performed in five families with different autosomal dominant inherited heart disease phenotypes of unknown genetic aetiology. In two of these likely pathogenic variants were identified, one in the gene encoding titin (TTN) and the other in the calcium channel subunit gene CACNA1C. In vitro studies were undertaken to support the pathogenicity of the TTN variant and understand the functional effects of this. In the other three families either multiple candidate gene variants were identified or no clear candidate variant was identified. This highlights the difficulties in interpreting these results, even in carefully selected families. Overall, although the research benefits of exome or genome studies are evident, the interpretation and validation of genetic variant data produced remains highly challenging for clinical diagnosis.
10

Borman, Natalie. « Study to identify the associations between polymorphisms in pharmacogenetic loci, mycophenolic acid precursors (mofetil or sodium) and clinical outcomes in renal transplant recipients using array based exome SNP sequencing ». Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/374655/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Clinical exome sequencing":

1

Clark, Robin D., et Cynthia J. Curry. Genetic Consultations in the Newborn. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780199990993.001.0001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
This book was written to assist clinicians who care for newborns with congenital abnormalities in their diagnosis, genomic testing, and management. The goal was to make the evaluation of common neonatal anomalies and genetic syndromes accessible and understandable. In addition, the book may serve as an initial guide for practitioners in areas in which clinical genetic expertise is not readily available. As the book was being written, the testing paradigm shifted to a genomic approach: Chromosome analysis gave way to microarrays, and single gene testing was largely replaced by gene panels and exome sequencing. Thus, this book, which was initially intended as a clinical primer, of necessity became a resource for gene-based information as well.
2

Ingles, Jodie, Charlotte Burns et Laura Yeates. Genetic counselling. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0145.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Cardiac genetic counselling is an emerging but important subspecialty. The qualifications of cardiac genetic counsellors depend on the country of practice, but at a minimum they are Master’s-level trained health professionals with expertise in genetics, and are integral members of the multidisciplinary inherited cardiovascular disease clinic. Though the framework is diverse in different countries, key roles include investigation and confirmation of family history details, discussion of inheritance risks and facilitation of cardiac genetic testing, communication with at-risk relatives, and increasingly, curation of genetic test results. The use of next-generation sequencing technologies has seen a recent shift in the uptake of genetic testing, due to greater availability and lowered costs. As these gene tests become more comprehensive, including large panels of genes and even whole exome or whole genome sequencing, the need for cardiac genetic counsellors to provide informed consent, appropriate pre- and post-test genetic counselling, and ongoing curation of the variants identified is evident. Finally, given the improved understanding of the psychological implications of living with a cardiovascular genetic disease, cardiac genetic counsellors are integral in delivering psychosocial care and identifying patients requiring intervention with a clinical psychologist.
3

Kotzer, Katrina E., et Sarah E. Kerr. Molecular Technologies and Test Issues. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190604929.003.0005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Molecular genetic testing has been around since the discovery and offering of clinical testing for the first gene sequenced. However, in recent years the methods and scope of molecular genetic testing have evolved significantly to encompass next-generation sequencing, multigene panels, and whole exome and genome testing. With this evolution in molecular methods, the nomenclature and variant evaluation and annotation processes are crucial for the systematic and standard interpretation of molecular test results. This chapter will provide the laboratory genetic counselor with information about the common sample types analyzed by molecular techniques for the purposes of genetic testing and the various methodologies available and their limitations. Guidelines are given for the standard approach to molecular variant reporting with respect to nomenclature and variant classification.

Chapitres de livres sur le sujet "Clinical exome sequencing":

1

Chiang, Theodore, Magalie Leduc, Mari Tokita, Teresa Santiago-Sim et Yaping Yang. « Exome Sequencing in the Clinical Setting ». Dans Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders, 305–20. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56418-0_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Durand, Claudia, et Saskia Biskup. « Genome, Exome, and Gene Panel Sequencing in a Clinical Setting ». Dans Nucleic Acids as Molecular Diagnostics, 271–90. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527672165.ch12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Biradar, Shivaleela, K. M. Kiran Kumar, M. Naveen Kumar et R. L. Babu. « Identification of Clinical Variants Present in Skin Melanoma Using Exome Sequencing Data ». Dans Learning and Analytics in Intelligent Systems, 85–96. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46943-6_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

De Braekeleer, Marc, Etienne De Braekeleer et Nathalie Douet-Guilbert. « Whole-Genome/Exome Sequencing in Acute Leukemia : From Research to Clinics ». Dans Next Generation Sequencing in Cancer Research, Volume 2, 381–400. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15811-2_22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Acharya, Anu, Shibichakravarthy Kannan, Brajendra Kumar, Jasmine Khurana, Sushma Patil et Geethanjali Tanikella. « Impact of Human Exome Sequencing on Clinical Research ». Dans Healthcare Ethics and Training, 603–24. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2237-9.ch027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Recent advances in human exome sequencing and the associated advantages have made it a technology of choice in various domains. The savings in time, cost and data storage compared with whole genome sequencing make this technology a potential game changer in clinical research settings. Recent advances in NGS have made it feasible to use exome sequencing in clinical research for identifying novel and rare variants that can lead to change in protein structure and function which may finally culminate into a totally different phenotype. If whole exome is not desired the same technology can be used for studying target exonic regions to investigate causative genes for a specific phenotype associated with disease. Exome sequencing has emerged as an effective and efficient tool for the translational and clinical research. There is a demand for systematically storing variant information in large databanks. Meaningful information from the exome-seq data can be combined with other data. This can be correlated with clinical findings within a clinical trial setting for a better study outcome.
6

O. Prosser, Debra, Indu Raja, Kelly Kolkiewicz, Antonio Milano et Donald Roy Love. « Clinical Validation of a Whole Exome Sequencing Pipeline ». Dans Molecular Medicine [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Horvath, Anelia D., Christopher Wassif, Evan Ball, Monalisa Azevedo, Sumeeta Singh, Jonathan Epstein, Julie Niemela et al. « Exome Sequencing in Patients with Carney Triad Reveals Genetic Variations in Functionally Relevant Pathways ». Dans CLINICAL/TRANSLATIONAL - Endocrine Neoplasia, P3–45—P3–45. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part3.p18.p3-45.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Clark, Robin D., et Cynthia J. Curry. « Hypotonia ». Dans Genetic Consultations in the Newborn, sous la direction de Robin D. Clark et Cynthia J. Curry, 3–10. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780199990993.003.0001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
This chapter reviews the incidence, risk factors, genetics, recurrence risk, and epidemiology of the multiple disorders causing congenital hypotonia. The differential diagnosis of various types of hypotonic syndromes includes chromosome anomalies, metabolic myopathies, peroxisomal disorders, brain malformations, congenital lower motor neuron diseases, hypoxic ischemic encephalopathy, congenital disorders of glycosylation, and multiple congenital anomaly single gene syndromes such as Kabuki syndrome and Bohring-Opitz syndrome. Recommendations for evaluation and management include discussion of key neurologic findings in the physical exam, biochemical and other laboratory screening, targeted single gene testing, panels for clinically heterogeneous disorders and exome sequencing. The clinical consult features an infant with congenital myotonic dystrophy.
9

Bruno, Stefania, et Nayana Lahiri. « Genetics of neuropsychiatric disease ». Dans Oxford Textbook of Neuropsychiatry, sous la direction de Niruj Agrawal, Rafey Faruqui et Mayur Bodani, 127–40. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198757139.003.0012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
To better understand the intricacies of genetic influences on neuropsychiatric disease, it is important first to have a grounding in the models of human inheritance and current diagnostic techniques. This chapter covers the fundamentals of genetic disorders, giving insights into chromosomal, single-gene, and mitochondrial disorders. Moreover, it explores the changing applications of genomic technologies, such as whole exome and whole genome sequencing, through the lens of their implications for neuropsychiatry. Clinical examples are provided to give an idea of the genetic underpinnings of Alzheimer’s disease, Parkinson’s disease, and other familiar disorders.
10

Kendall, Kimberley M., James T. R. Walters et Michael C. O’Donovan. « Genetics of schizophrenia ». Dans New Oxford Textbook of Psychiatry, sous la direction de John R. Geddes, Nancy C. Andreasen et Guy M. Goodwin, 587–96. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198713005.003.0059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
This chapter on genetics of schizophrenia briefly summarizes the key findings from genetic epidemiology and the early, but largely unsuccessful, findings from molecular genetics, based on linkage and candidate gene studies. It then reviews in detail the contemporary findings from genome-wide studies of the disorder, including those from genome-wide association studies (GWAS) of common variation, copy number variant studies (CNV) of rare variation, and exome-wide sequencing studies. It considers the implications of these studies with respect to pathophysiology, the relationship between schizophrenia and other psychiatric disorders, and the current clinical implications of the findings.

Actes de conférences sur le sujet "Clinical exome sequencing":

1

Shakhbatyan, Rimma, Himanshu Sharma, Ellen Tsai, Mark J. Bowser, Birgit Funke et Matthew S. Lebo. « Validation and implementation of whole-exome sequencing bioinformatics processes for clinical applications ». Dans BCB '14 : ACM-BCB '14. New York, NY, USA : ACM, 2014. http://dx.doi.org/10.1145/2649387.2660794.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wagle, Nikhil, Eliezer Van Allen, Danielle Perrin, Dennis Friedrich, Sheila Fisher, Gregory Kryukov, Lauren Ambrogio et al. « Abstract 3152 : CanSeq : prospective clinical whole-exome sequencing of FFPE tumor samples. » Dans Proceedings : AACR 104th Annual Meeting 2013 ; Apr 6-10, 2013 ; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3152.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chang, Vivian, Hane Lee, Tom Davidson, Naghmeh Dorrani, Erin O'Leary, Patricia A. Ganz, Stanley F. Nelson et Julian A. Martinez-Agosto. « Abstract 08 : Clinical exome sequencing in the diagnosis of pediatric cancer predisposition ». Dans Abstracts : AACR Special Conference : Cancer Susceptibility and Cancer Susceptibility Syndromes ; January 29-February 1, 2014 ; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.cansusc14-08.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liu, Rangjiao Roger, Anuradha Lakshminarayana, Daniel Durkin, Sara Patterson, Craig Hanna, Grace A. Stafford, Guruprasad Ananda, Krishna M. Karuturi et Susan M. Mockus. « Clinical knowledgebase to interprete genomic variations from targeted exome sequencing of patient tumor samples ». Dans BCB '15 : ACM International Conference on Bioinformatics, Computational Biology and Biomedicine. New York, NY, USA : ACM, 2015. http://dx.doi.org/10.1145/2808719.2811432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Cullinan, Darren R., S. Peter Goedegebuure, Chris A. Miller, Timothy M. Nywening, Samuel Kim, Elaine R. Mardis, William G. Hawkins et William E. Gillanders. « Abstract A70 : Identification of pancreatic cancer neoantigens by exome and RNA sequencing analysis ». Dans Abstracts : AACR Special Conference on Pancreatic Cancer : Advances in Science and Clinical Care ; May 12-15, 2016 ; Orlando, FL. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.panca16-a70.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Monleon, Angela Martinez, Susanne Reinsbach, Niloufar Javanmardi, Anna Djos, Rose-Marie Sjoberg, Per Kogner, Tommy Martinsson et Susanne Fransson. « Abstract 4867 : Exome- and whole genome sequencing for clinical evaluation and precision medicine in neuroblastoma ». Dans Proceedings : AACR Annual Meeting 2017 ; April 1-5, 2017 ; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4867.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ho, Cheng-Mao, Hsi-Yuan Huang, Chin-An Yang, Ya-Sian Chang, Chien-Yu Lin et Jan-Gowth Chang. « Establish Reporting Format of Gene Related Rare-Diseases by Exome Sequencing in the Clinical Medical Laboratory ». Dans 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2016. http://dx.doi.org/10.1109/bibe.2016.66.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Schleifman, Erica B., Anna Kiialainen, Andreas Roller, Sabine Bader, Maipelo Motlhabi, Priti Hegde, Ian McCaffery et al. « Abstract 3631 : Whole transcriptome and exome targeted RNA sequencing for FFPE tumor samples from clinical trials ». Dans Proceedings : AACR 107th Annual Meeting 2016 ; April 16-20, 2016 ; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3631.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xu, Qiang, Guan Wang, Chun Dai, Cheng Chen, Xiaoman Xu, Haining Wang, Angela Wu et Jiping Wang. « Abstract LB-040 : Application of clinical whole exome sequencing among larger scale advanced cancer patients in China ». Dans Proceedings : AACR Annual Meeting 2017 ; April 1-5, 2017 ; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-lb-040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Parsons, Donald W., Angshumoy Roy, Federico A. Monzon, Yaping Yang, Dolores H. López-Terrada, Murali M. Chintagumpala, Stacey L. Berg et al. « Abstract 5169 : Diagnostic yield of clinical tumor and germline exome sequencing for newly diagnosed children with solid tumors ». Dans Proceedings : AACR Annual Meeting 2014 ; April 5-9, 2014 ; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Vers la bibliographie