Littérature scientifique sur le sujet « Collapse model »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Collapse model ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Collapse model"
Mohamadi, Bahaa, Timo Balz et Ali Younes. « Towards a PS-InSAR Based Prediction Model for Building Collapse : Spatiotemporal Patterns of Vertical Surface Motion in Collapsed Building Areas—Case Study of Alexandria, Egypt ». Remote Sensing 12, no 20 (12 octobre 2020) : 3307. http://dx.doi.org/10.3390/rs12203307.
Texte intégralTan, Fei, Wufeiyu Tan, Feifei Yan, Xin Qi, Qinghua Li et Zhikai Hong. « Model Test Analysis of Subsurface Cavity and Ground Collapse Due to Broken Pipe Leakage ». Applied Sciences 12, no 24 (19 décembre 2022) : 13017. http://dx.doi.org/10.3390/app122413017.
Texte intégralKella, Offer, et Andreas Löpker. « A MARKOV-MODULATED GROWTH COLLAPSE MODEL ». Probability in the Engineering and Informational Sciences 24, no 1 (21 décembre 2009) : 99–107. http://dx.doi.org/10.1017/s0269964809990155.
Texte intégralThorson, James T., Trevor A. Branch et Olaf P. Jensen. « Using model-based inference to evaluate global fisheries status from landings, location, and life history data ». Canadian Journal of Fisheries and Aquatic Sciences 69, no 4 (avril 2012) : 645–55. http://dx.doi.org/10.1139/f2012-016.
Texte intégralWang, Yi Xuan, et Lei Huang. « Research on Numerical Model for Earthquake Induced Progressive Collapse of High-Rise Buildings ». Applied Mechanics and Materials 716-717 (décembre 2014) : 223–26. http://dx.doi.org/10.4028/www.scientific.net/amm.716-717.223.
Texte intégralDEL POPOLO, ANTONINO. « IMPROVEMENTS TO THE SPHERICAL COLLAPSE MODEL ». International Journal of Modern Physics D 15, no 07 (juillet 2006) : 1067–88. http://dx.doi.org/10.1142/s0218271806008553.
Texte intégralXu, Qinghu, Xuezhi Zhen, Yu Zhang, Mengjun Han et Wenkang Zhang. « Numerical Simulation Study of Progressive Collapse of Reinforced Concrete Frames with Masonry Infill Walls under Blast Loading ». Modelling and Simulation in Engineering 2022 (11 novembre 2022) : 1–16. http://dx.doi.org/10.1155/2022/1781415.
Texte intégralXie, Kai Zhong, Guang Qiang Chen et Li Lin Wei. « A Damage Model for Collapse-Mechanism of Long-Span and High-Pier Continuous Rigid Frame Bridges ». Advanced Materials Research 219-220 (mars 2011) : 1431–35. http://dx.doi.org/10.4028/www.scientific.net/amr.219-220.1431.
Texte intégralAkbari, Amir, Reghan J. Hill et Theo G. M. van de Ven. « An elastocapillary model of wood-fibre collapse ». Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences 471, no 2179 (juillet 2015) : 20150184. http://dx.doi.org/10.1098/rspa.2015.0184.
Texte intégralHuang, Sheng Nan, Xin Zheng Lu et Lie Ping Ye. « A Hysteretic Model of Conventional Steel Braces and an Analysis of the Collapse Prevention Effect of Brace Strengthening ». Applied Mechanics and Materials 174-177 (mai 2012) : 3–10. http://dx.doi.org/10.4028/www.scientific.net/amm.174-177.3.
Texte intégralThèses sur le sujet "Collapse model"
Herbauts, Isabelle Manon. « Causal wave function collapse model ». Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427988.
Texte intégralPlunkett, J. William (James William Jr ). « The Roman Pantheon : scale-model collapse analyses ». Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107867.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 27-31).
The Roman Pantheon is among the largest unreinforced masonry dome ever built and is an unparalleled example of the construction capabilities of the ancient Romans. As one of the most well-known buildings in the world, its preservation remains important because of its cultural and societal significance, and the methods used to assess the safety of historic masonry structures continue to be developed, particularly for three-dimensional vaulted forms. Through a study of the Roman Pantheon, this thesis compares analytical and experimental results on a 1:100 scale model of the variable thickness, hemispherical dome. The model is created using additive manufacturing for accuracy. This thesis, using a physical scale model, quantifies the safety of the Roman Pantheon against the two most probable causes of collapse (i) deformation of the building geometry and (2) seismic activity. The structural behavior of the model is compared to analytical predictions of (1) spreading supports, simulating leaning walls that result from the dome thrust or settling of the foundations, and (2) tilting, a first-order approximation of horizontal ground acceleration. The experimental tests lead to the formation of a mechanism and collapse due to instability. High-speed imagery captures the observed collapse mechanisms and failure limits. Experimental results are compared to analytical predictions for hemispherical masonry domes. The results of the physical experiment demonstrate the potential for digitally fabricated scale models in approximating the behavior of three-dimensional structures with complex geometries. The low cost and rapid approach provides a useful method for validating analytical predictions of the limit states and collapse mechanisms of unreinforced masonry structures.
by J. William Plunkett.
S.M. in Building Technology
Morone, Daniel Justin Reese. « Progressive Collapse : Simplified Analysis Using Experimental Data ». The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354602937.
Texte intégralWang, Joseph Chen-yu. « A one dimensional model of convection in iron core collapse supernovae / ». Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Texte intégralMonasterios, Perez Karin. « Structural adjustment and the collapse of the Bolivian model of accumulation ». Ottawa, 1994.
Trouver le texte intégralChristenson, Michael P. « Black Spaghetti : A Numerical Model of Gravitational Collapse in 4 + 1 Spacetime ». Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd907.pdf.
Texte intégralAkah, Ebiji Anthony. « Experimental and Analytical Collapse Evaluation of an Existing Building ». The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437620552.
Texte intégralVandamme, Johan Richard. « Novel particle model for the prediction of stability and episodic collapse of coastal cliffs and levees ». Thesis, University of Plymouth, 2012. http://hdl.handle.net/10026.1/1027.
Texte intégralCorral, Jofré Gonzalo Andrés. « Re-analysis of deep excavation collapse using a generalized effective stress soil model ». Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/60759.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (p. 137-138).
This thesis re-analyzes the well-documented failure of a 30m deep braced excavation underconsolidated marine clay. Prior analyses of the collapse of the Nicoll Highway have relied on simplified soil models with undrained strength parameters based on empirical correlations and piezocone penetration data. In contrast, the current research simulates the engineering properties of the key Upper and Lower Marine Clay units using a generalized effective stress soil model, MIT-E3, with input parameters calibrated using laboratory test data obtained as part of the post-failure site investigation. The model predictions are evaluated through comparisons with monitoring data and through comparisons with results of prior analyses using the Mohr-Coulomb (MC) model. The MIT-E3 analyses provide a modest improvement in predictions of the measured wall deflections compared to prior MC calculations and give a consistent explanation of the bending failure in the south diaphragm wall and the overloading of the strut-waler connection at the 9th level of strutting. The current analyses do not resolve uncertainties associated with performance of the JGP rafts, movements at the toe of the north-side diaphragm wall or discrepancies with the measured strut loads at level 9. However, they represent a significant advance in predicting excavation performance based directly on results of laboratory tests compared to prior analyses that used generic (i.e., non site-specific) design isotropic strength profiles.
by Gonzalo Andrés Corral Jofré.
Civ.E.
Gambarotto, Pietro. « Formation of dark matter halos. Statistics and dynamics of the ellipsoidal collapse model ». Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3424900.
Texte intégralNel quadro del modello cosmologico standard, la formazione delle strutture è descritta attraverso il collasso di perturbazioni di densità con una distribuzione iniziale generalmente assunta come gaussiana. Queste fluttuazioni erano inizialmente piccole e sono cresciute successivamente per effetto della gravità. In un universo ΛCDM la formazione delle strutture cosmiche è guidata dal collasso della materia oscura che porta alla formazione di aloni virializzati. La materia barionica cade dentro alle buche di potenziale create da questi aloni, si raffredda e conduce alla formazione di stelle e galassie, trasformando la sua energia cinetica in energia termica (White and Rees 1978; Blumenthal et al. 1984). Successivamente, le strutture crescono in modo gerarchico, dalle più piccole alle più grandi. Quindi, aloni contenenti galassie massicce si formano tramite l’accrescimento di aloni più piccoli da parte dell’alone principale. Il collasso e la successiva formazione di aloni di materia oscura è dovuto unicamente alla gravità; per questo motivo la sua descrizione è semplice in linea di principio e coinvolge un alto numero di particelle. Un modo efficace di analizzare la formazione di questi aloni passa per l’utilizzo di simulazioni a N corpi. Con questo approccio non si ricerca una soluzione analitica, bensì viene fatto evolvere un gran numero di particelle soggette alla sola interazione gravitazionale. È così possibile simulare una regione di universo e analizzare il moto delle particelle e la formazione di strutture collassate. La struttura di questo lavoro è la seguente: • Capitolo 1: Presentiamo il modello cosmologico standard per la formazione delle strutture cosmiche e descriviamo brevemente le proprietà statistiche dei campi di fluttuazionelinearielacrescitadiperturbazionilineariallalucedellateoriadiJeans. • Capitolo 2: Descriviamo i principali approcci analitici allo studio delle perturbazioni in regime non lineare. Prima di tutto presentiamo l’approssimazione di Zel’dovich applicabile al caso di un regime quasi lineare. e descriviamo i due principali modelli dinamici per lo studio del collasso delle strutture: il modello di collasso sferico e il modello di collasso ellissoidale. Più avanti descriviamo due approcci analitici per la determinazione la statistica degli aloni a partire dal campo di fluttuazioni iniziale: il modello degli excursion sets e il formalismo dei picchi. Descriviamo anche brevemente alcuni tentativi di fondere assieme questi due approcci. • Capitolo 3: Descriviamo il metodo principale utilizzato per lo studio di strutture fortemente non lineari: le simulazioni a N corpi. Descriviamo inoltre le caratteristiche principali delle simulazioni numeriche utilizzate in questo lavoro. Infine, descriviamo le proprietà principali degli aloni di materia oscura, concentrandoci sul contributo dato a questo campo dalle simulazioni numeriche. • Capitolo 4: Inizialmente descriviamo i diversi metodi per l’identificazione di aloni e i criteri di rilassamento usati in questo lavoro. Successivamente descriviamo come sono stati calcolati i parametri del collasso ellissoidale a partire dagli autovalori del tensore di deformazione smussati su diverse scale. L'ultima sezione del capitolo è infine dedicata allo studio di una descrizione della distribuzione dei tempi di formazione dei soli aloni rilassati. • Capitolo 5: Descriviamo il metodo usato per l’identificazione dei picchi nei campi iniziali e presentiamo una descrizione statistica dei picchi suddetti. Successivamente analizziamo la funzione di correlazione tra i centri di massa dei protoaloni e i picchi e le valli nella distribuzione dei parametri di interesse. L'ultima parte del capitolo è dedicata all'analisi di un’alternativa al formalismo dei picchi per l’identificazione della formazione degli aloni. Infatti, il collasso sferico e quello ellissoidale mancano di un termine di dipolo presente invece nella teoria delle perturbazioni. Studiamo dunque i punti dove il dipolo iniziale svanisce e li relazioniamo ai centri di massa dei protoaloni. • Capitolo 6: Nella prima parte presentiamo una descrizione statistica dei parametri Lagrangiani, svolgendo un opportuno confronto coi risultati di altri autori. Successivamente indaghiamo la correlazione tra i parametri lagrangiani δL e qL e i redshift di formazione degli aloni z50 in funzione della massa universale ν e del redshift di identificazione. • Capitolo 7:Mentre nel precedente capitolo abbiamo descritto parametri smussati su una sola scala, la scala lagrangiana degli aloni, passiamo ora all’analisi dei profili. Primariamente costruiamo i profili lagrangiani attorno al centro di massa dei protoaloni e mostriamo come correlano con il parametro di shear e il redshift di formazione. Successivamente studiamo la relazione tra i profili lagrangiani e i profili euleriani e mostriamo che l’effetto dello shear lagrangiano e del tempo di formazione ancora presente nei profili finali. Infine studiamo l’evoluzione dei profili delle particelle dell’alone a diversi tempi cosmici.
Livres sur le sujet "Collapse model"
Peadar, Kirby, dir. Celtic tiger in collapse : Explaining the weaknesses of the Irish model. 2e éd. New York : Palgrave Macmillan, 2010.
Trouver le texte intégralFalzon, Brian G. An introduction to modelling buckling and collapse. Glasgow : NAFEMS, 2006.
Trouver le texte intégralGarber, Peter M. The operation and collapse of fixed exchange rate regimes. Cambridge, MA : National Bureau of Economic Research, 1994.
Trouver le texte intégralGarber, Peter M. The operation and collapse of fixed exchange rate regimes. Cambridge, Mass : National Bureau of Economic Research, 1994.
Trouver le texte intégralGarber, Peter M. The operation and collapse of fixed exchange rate regimes. Stockholm : Stockholm University, Institute for International Economic Studies, 1995.
Trouver le texte intégralDolinskai︠a︡, Irina. Explaining Russia's output collapse : Aggregate sources and regional evidence. [Washington, D.C.] : International Monetary Fund, IMF Institute, 2001.
Trouver le texte intégralEmergence and collapse of early villages : Models of central mesa verde archaeology. Berkeley : University of California Press, 2012.
Trouver le texte intégralThe dynamics of apocalypse : A systems simulation of the classic Maya collapse. Albuquerque : University of New Mexico Press, 1985.
Trouver le texte intégralFibich, Gadi. Backscattering and nonparaxiality arrest collapse of damped nonlinear waves. Hampton, VA : Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2002.
Trouver le texte intégralW, Cooper Russell. Financial collapse and active monetary policy : A lesson from the Great Depression. [Minneapolis, Minn.] : Federal Reserve Bank of Minneapolis, 2001.
Trouver le texte intégralChapitres de livres sur le sujet "Collapse model"
Kirby, Peadar. « Introduction : The Collapse of the Irish Model ». Dans Celtic Tiger in Collapse, 1–10. London : Palgrave Macmillan UK, 2010. http://dx.doi.org/10.1057/9780230278035_1.
Texte intégralBlakemore, Philip. « A Theoretical Model of Collapse Recovery ». Dans Delamination in Wood, Wood Products and Wood-Based Composites, 101–19. Dordrecht : Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9550-3_5.
Texte intégralRodopoulos, C. A. « Collapse Stress and the Dugdale’s Model ». Dans Problems of Fracture Mechanics and Fatigue, 597–99. Dordrecht : Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_131.
Texte intégralJia, Menghao, Fanyi Zhang, Xinyi Lyu, Yuncheng Wen et Hua Xu. « Three-Dimensional Hydrodynamic Analysis and Early Warning of Ω-Collapse in the Lower Reaches of the Yangtze River Based on Experimental Study on Generalized Model ». Dans Lecture Notes in Civil Engineering, 1589–603. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_140.
Texte intégralMasunaga, Hirohiko, S. Inutsuka et S. M. Miyama. « A Radiation Hydrodynamical Model for Protostellar Collapse ». Dans Numerical Astrophysics, 169–70. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4780-4_52.
Texte intégralGorman, Michael E. « Cognition, Environment and the Collapse of Civilizations ». Dans Model-Based Reasoning in Science, Technology, and Medicine, 217–27. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71986-1_12.
Texte intégralZhu, Ruifang, et Wei Shen. « Edge Collapse Considering Triangular Mesh for Model Simplification ». Dans Proceedings of The Eighth International Conference on Bio-Inspired Computing : Theories and Applications (BIC-TA), 2013, 1175–81. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37502-6_137.
Texte intégralAschheim, Joseph, Costas Christou, P. A. V. B. Swamy et George S. Tavlas. « A Random Coefficient Model of Speculative Attacks : The Case of the Mexican Peso ». Dans The Collapse of Exchange Rate Regimes, 123–41. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-6289-4_8.
Texte intégralTomoaia-Cotişel, Maria, J. Zsako, E. Chifu, D. A. Cadenhead et H. E. Ries. « Collapse Mechanism of some Carotenoid Monomolecular Films - Membrane Model ». Dans Progress in Photosynthesis Research, 333–37. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3535-8_81.
Texte intégralZhang, Yan, Guoshao Su et Liubin Yan. « Gaussian Process Machine Learning Model for Forecasting of Karstic Collapse ». Dans Communications in Computer and Information Science, 365–72. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23214-5_48.
Texte intégralActes de conférences sur le sujet "Collapse model"
Liu, Zhiqiang, et Qing Huang. « Market Competition and Stock Collapse Risk ». Dans 2019 International Conference on Economic Management and Model Engineering (ICEMME). IEEE, 2019. http://dx.doi.org/10.1109/icemme49371.2019.00016.
Texte intégralSTOITCHEVA, G., et D. J. DEAN. « SHELL MODEL OF NUCLEI FOR STELLAR CORE COLLAPSE : CURRENT STATUS, FUTURE PROSPECTS ». Dans Open Issues in Core Collapse Supernova Theory. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812703446_0012.
Texte intégralLundgren, T. S., et D. D. Joseph. « Symmetric Model of Capillary Collapse and Rupture (Keynote) ». Dans ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37262.
Texte intégralBuscemi, Nanci, et Shalva Marjanishvili. « SDOF Model for Progressive Collapse Analysis ». Dans Structures Congress 2005. Reston, VA : American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40753(171)221.
Texte intégralSavoia, Alessandro S., Omid Farhanieh et Bruno Haider. « A Large-Signal Nonlinear Equivalent Circuit Model for CMUTs Operating in Collapse and Non-Collapse Modes ». Dans 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9957850.
Texte intégralBrechan, Bjorn, Even Kornberg, Sigbjorn Sangesland et Stein Inge Dale. « Well Integrity Model - Klever & ; Tamano Collapse ». Dans SPE/IADC Middle East Drilling Technology Conference and Exhibition. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/189395-ms.
Texte intégralTsukada, H., M. DeCamp, CR O'Donnell, D. Litmanovich, R. Garland et A. Ernst. « A Sheep Model for Hyperdynamic Central Airway Collapse. » Dans American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5782.
Texte intégralAlashker, Yasser, et Sherif El-Tawil. « Design Model for Collapse Capacity of Composite Floors ». Dans Structures Congress 2010. Reston, VA : American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41130(369)106.
Texte intégralZheng, Xin, Hairong Yan, Xiao Gao et Yubo Tu. « AWFMFNet image classification network model for concrete collapse ». Dans 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2022. http://dx.doi.org/10.1109/imcec55388.2022.10020095.
Texte intégralBabaei, M. H. « Collapse of Rectangular Granular Piles in Air and Water ». Dans ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65012.
Texte intégralRapports d'organisations sur le sujet "Collapse model"
Woodson, Stanley C., et James T. Baylot. Structural Collapse : Quarter-Scale Model Experiments. Fort Belvoir, VA : Defense Technical Information Center, août 1999. http://dx.doi.org/10.21236/ada369355.
Texte intégralG. Li et C. Tsang. Seepage Model for PA Including Dift Collapse. Office of Scientific and Technical Information (OSTI), décembre 2000. http://dx.doi.org/10.2172/840689.
Texte intégralC. Tsang. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE. Office of Scientific and Technical Information (OSTI), septembre 2004. http://dx.doi.org/10.2172/841253.
Texte intégralMcHardy, James. Development of a Cavity Collapse Model of Cavitation Bubbles in Water in One and Two Dimensions using the Finite Volume FLAG Hydrocode at Atmospheric Pressure and 293K. Office of Scientific and Technical Information (OSTI), juin 2014. http://dx.doi.org/10.2172/1136106.
Texte intégralAdler, R. Simple Analytic Models of Gravitational Collapse. Office of Scientific and Technical Information (OSTI), février 2005. http://dx.doi.org/10.2172/839752.
Texte intégralTerzic, Vesna, et William Pasco. Novel Method for Probabilistic Evaluation of the Post-Earthquake Functionality of a Bridge. Mineta Transportation Institute, avril 2021. http://dx.doi.org/10.31979/mti.2021.1916.
Texte intégralBaader, Franz, et Cesare Tinelli. Combining Equational Theories Sharing Non-Collapse-Free Constructors. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.103.
Texte intégralPeters, C. Mechanical test results on Dipole model C-1 25 mm aluminum collars. Office of Scientific and Technical Information (OSTI), février 1985. http://dx.doi.org/10.2172/5224978.
Texte intégralWolfe, S. A., H. B. O'Neill, C. Duchesne, D. Froese, J M Young et S. V. Kokelj. Ground ice degradation and thermokarst terrain formation in Canada over the past 16 000 years. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329668.
Texte intégralGunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay et Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembre 2020. http://dx.doi.org/10.55461/svks9397.
Texte intégral