Littérature scientifique sur le sujet « Collision optimization »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Collision optimization ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Collision optimization"
Xu, Qingyang, Chuang Zhang et Ning Wang. « Multiobjective Optimization Based Vessel Collision Avoidance Strategy Optimization ». Mathematical Problems in Engineering 2014 (2014) : 1–9. http://dx.doi.org/10.1155/2014/914689.
Texte intégralLi, Jinxin, Hongbo Wang, Wei Zhao et Yuanyuan Xue. « Ship’s Trajectory Planning Based on Improved Multiobjective Algorithm for Collision Avoidance ». Journal of Advanced Transportation 2019 (9 avril 2019) : 1–12. http://dx.doi.org/10.1155/2019/4068783.
Texte intégralMohamed, Abdulrahman. « Novel approach for anti-collision planning optimization in directional wells ». International Journal of Engineering & ; Technology 9, no 2 (3 avril 2020) : 333. http://dx.doi.org/10.14419/ijet.v9i2.30306.
Texte intégralMa, Wen Yao, et Jia Xuan Yang. « Collision Avoidance Strategy Optimization of Ship’s Speed Alteration with Bacterial Foraging Algorithm ». Applied Mechanics and Materials 278-280 (janvier 2013) : 1318–22. http://dx.doi.org/10.4028/www.scientific.net/amm.278-280.1318.
Texte intégralLazarowska, Agnieszka. « Safe Ship Control Method with the Use of Ant Colony Optimization ». Solid State Phenomena 210 (octobre 2013) : 234–44. http://dx.doi.org/10.4028/www.scientific.net/ssp.210.234.
Texte intégralXia, Guoqing, Zhiwei Han, Bo Zhao et Xinwei Wang. « Local Path Planning for Unmanned Surface Vehicle Collision Avoidance Based on Modified Quantum Particle Swarm Optimization ». Complexity 2020 (13 avril 2020) : 1–15. http://dx.doi.org/10.1155/2020/3095426.
Texte intégralMachmudah, Affiani, et Setyamartana Parman. « Bezier Curve Collision-Free Route Planning Using Meta-Heuristic Optimization ». International Journal of Artificial Intelligence & ; Robotics (IJAIR) 3, no 1 (31 mai 2021) : 1–14. http://dx.doi.org/10.25139/ijair.v3i1.3821.
Texte intégralCustură-Crăciun, Dan, Daniel Cochior et Corneliu Neagu. « Optimization of Collision Detection in Surgical Simulations ». ACTA Universitatis Cibiniensis 64, no 1 (1 novembre 2014) : 34–39. http://dx.doi.org/10.2478/aucts-2014-0007.
Texte intégralLiu, Jiang, Bai Gen Cai, Yun Peng Wang et Jian Wang. « Simulation Analysis of a PSO-Based Vehicle Collision Avoidance Method under Cooperative Vehicle Infrastructure Environment ». Applied Mechanics and Materials 241-244 (décembre 2012) : 1539–44. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.1539.
Texte intégralZheng, Yisong, Xiuguo Zhang, Zijing Shang, Siyu Guo et Yiquan Du. « A Decision-Making Method for Ship Collision Avoidance Based on Improved Cultural Particle Swarm ». Journal of Advanced Transportation 2021 (15 janvier 2021) : 1–31. http://dx.doi.org/10.1155/2021/8898507.
Texte intégralThèses sur le sujet "Collision optimization"
Lithgow, Anthony R. « Collision-free trajectory optimization for multiple robotic manipulators ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0004/MQ32490.pdf.
Texte intégralMorris, Bradford Shepherd J. E. Shepherd J. E. « Charge-exchange collision dynamics and ion engine grid geometry optimization / ». Diss., Pasadena, Calif. : California Institute of Technology, 2007. http://resolver.caltech.edu/CaltechETD:etd-02282007-154751.
Texte intégralLepird, John R. « Multi-objective optimization of next-generation aircraft collision avoidance software ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98566.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
"June 2015." Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 85-90).
Developed in the 1970's and 1980's, the Traffic Alert and Collision Avoidance System (TCAS) is the last safety net to prevent an aircraft mid-air collision. Although TCAS has been historically very effective, TCAS logic must adapt to meet the new challenges of our increasingly busy modern airspace. Numerous studies have shown that formulating collision avoidance as a partially-observable Markov decision process (POMDP) can dramatically increase system performance. However, the POMDP formulation relies on a number of design parameters modifying these parameters can dramatically alter system behavior. Prior work tunes these design parameters with respect to a single performance metric. This thesis extends existing work to handle more than one performance metric. We introduce an algorithm for preference elicitation that allows the designer to meaningfully define a utility function. We also discuss and implement a genetic algorithm that can perform multi-objective optimization directly. By appropriately applying these two methods, we show that we are able to tune the POMDP design parameters more effectively than existing work.
by John R. Lepird.
S.M.
Degenhardt, Richard Kennedy III. « Self-collision avoidance through keyframe interpolation and optimization-based posture prediction ». Thesis, University of Iowa, 2014. https://ir.uiowa.edu/etd/1446.
Texte intégralWoerner, Kyle. « COLREGS-Compliant Autonomous Collision Avoidance Using Multi-Objective Optimization with Interval Programming ». Thesis, Monterey, California. Naval Postgraduate School, 2014. http://hdl.handle.net/10945/43076.
Texte intégralHigh contact density environments are becoming ubiquitous in autonomous marine vehicle (AMV) operations. Safely managing these environments and their mission greatly taxes platforms. AMV collisions will likely increase as contact density in- creases. In situations where AMVs are not performing a collaborative mission but are using shared physical space such as multiple vehicles in the same harbor, a high demand exists for safe and e cient operation to minimize mission track deviations while preserving the safety and integrity of mission platforms. With no existing pro- tocol for collision avoidance of AMVs, much e ort to date has focused on individual ad hoc collision avoidance approaches that are self-serving, lack the uniformity of eet-distributed protocols, and disregard the overall eet e ciency when scaled to being in a contact-dense environment. This research shows that by applying interval programming and a collision avoidance protocol such as the International Regulations for Prevention of Collisions at Sea (COLREGS) to a eet of AMVs operating in the same geographic area, the eet achieves nearly identical e ciency concurrent with signi cant reductions in the collisions observed. A basic collision avoidance protocol was analyzed against a COLREGS-based algorithm while parameters key to collision avoidance were studied using Monte Carlo methods and regression analysis of both real-world and simulated statistical data. A testing metric was proposed for declaring AMVs as \COLREGS-compliant" for at-sea operations. This work tested ve AMVs simultaneously with COLREGS collision avoidance{the largest test known to date.
Smith, Kyle A. (Kyle Alexander). « Collision avoidance system optimization for closely spaced parallel operations through surrogate modeling ». Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82491.
Texte intégralThis electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.
"June 2013." Cataloged from department-submitted PDF version of thesis
Includes bibliographical references (p. 103-106).
The Traffic Alert and Collision Avoidance System (TCAS) is mandated worldwide to protect against aircraft mid-air collisions. One drawback of the current TCAS design is limited support for certain closely spaced parallel runway operations. TCAS alerts too frequently, leading pilots to often inhibit Resolution Advisories during approach. Research is underway on the Airborne Collision Avoidance System X (ACAS X), a next-generation collision avoidance system that will support new surveillance systems and air traffic control procedures. ACAS X has been shown to outperform TCAS for enroute encounter scenarios. However, the design parameters that are tuned for the enroute environment are not appropriate for closely spaced parallel operations (CSPO). One concept to enhance the safety of CSPO is a procedure-specific mode of the logic that minimizes nuisance alerts while still providing collision protection. This thesis describes the application of surrogate modeling and automated search for the purpose of tuning ACAS X for parallel operations. The performance of the tuned system is assessed using a data-driven blunder model and an operational performance model. Although collision avoidance system development normally relies on human judgment and expertise to achieve ideal behavior, surrogate modeling is efficient and effective in tuning ACAS X for CSPO as the tuned logic outperforms TCAS in terms of both safety and operational suitability
by Kyle A. Smith.
S.M.
Gonzalez-Carrascosa, Partida Ricardo. « Optimizing manoeuvres for long collision avoidance active system of a car ». Thesis, Högskolan i Skövde, Institutionen för teknik och samhälle, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-8502.
Texte intégralHan, Kyung Min. « Collision free path planning algorithms for robot navigation problem ». Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/5021.
Texte intégralThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on September 29, 2008) Includes bibliographical references.
Spencer, John Edward. « ION MOTION AND AN OPTIMIZATION OF TANDEM MASS SPECTROMETRY ». UKnowledge, 2005. http://uknowledge.uky.edu/gradschool_theses/211.
Texte intégralBishnoi, Abhiraj. « GPU-Assisted Collision Avoidance for Trajectory Optimization : Parallelization of Lookup Table Computations for Robotic Motion Planners Based on Optimal Control ». Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290587.
Texte intégralEn av de största utmaningarna med optimeringsbaserade metoder för rörelseplaneringinom robotik är deras extrema känslighet för en bra initial gissning,särskilt i närvaro av lokala minima i kostnadsfunktionslandskapet. Ytterligareutmaningar kan också uppstå på grund av operativa begränsningar. Robotkontrollerhar ibland väldigt lite tid att planera en väg för att utföra en önskadfunktion. För att kringgå dessa begränsningar är en vanlig lösning att dela upprörelseplaneraren i en offline-fas och en online-fas. Offlinefasen inkluderarberäkning av referensvägar för olika punkter i ingångstillståndsutrymmet iform av en uppslagstabell. Under online-fasen levereras en avskalad versionav optimeraren med en lämplig initial gissning från uppslagstabellen medden aktuella uppskattningen av roboten och dess omgivande kroppar. Dennametod hjälper till att lindra problem relaterade till både lokala minima ochdriftstidsbegränsningar genom att sådd optimeraren med en lämplig initialgissning som gör att den kan konvergera till det globala minimumet mycketsnabbare.Problemet flyttas emellertid nu till beräkningskomplexiteten för att beräknaen uppslagstabell över referensvägar för ett tillräckligt fint utrymme för ingångstillståndsutrymmet.För många robotscenarier av intresse är det ofta opraktisktoch ibland beräkningsmässigt omöjligt att beräkna en uppslagstabell med hjälpav en seriell, enda kärnimplementering av offline-fasen i en rörelseplanner.Huvudbidraget till detta arbete är att utveckla och utvärdera en metod för attminska tiden som används för att beräkna en uppslagstabell över referensvägarunder offline-fasen för rörelsesplanerare baserat på optimal kontroll. Vi implementeraren metod för att utföra en kollision undvika en grafikbehandlingsenhet(GPU), medan du använder en uppgiftsbaserad metod för att distribuerauppslagningsberäkningar för oberoende delmängder av inmatningsutrymmeöver flera processer i ett kluster av maskiner. Vi demonstrerar effektivitetenav den föreslagna metoden i en praktisk miljö genom att implementeraoch utvärdera den inom en representativ rörelseplanner baserat på optimalkontroll. Vi noterar att den implementerade metoden är 115 gånger snabbareän den ursprungliga serieversionen av schemaläggaren, med 86 processer på 5maskiner med standardhårdvara och totalt 5 GPU: er. Dessutom observerarvi att den implementerade metoden resulterar i lösningar som är identiskamed den ursprungliga serieversionen i mer än 96,6 % av fallen, vilket gertrovärdighet för dess användning i robotrörelse planering.
Livres sur le sujet "Collision optimization"
Mog, R. A. Global nonlinear optimization of spacecraft protective structures design. [Marshall Space Flight Center, Ala.] : National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1990.
Trouver le texte intégralP, Rowe Sean, Breininger David R et United States. National Aeronautics and Space Administration., dir. Temporal, spatial, and diurnal patterns in avian activity at the Shuttle Landing Facility, John F. Kennedy Space Center, Florida, U.S.A. [Washington, D.C : National Aeronautics and Space Administration, 1997.
Trouver le texte intégralChapitres de livres sur le sujet "Collision optimization"
Yu, Xiaolei, Zhimin Zhao et Xuezhou Zhang. « Optimization Algorithm and RFID System Physical Anti-Collision ». Dans Physical Anti-Collision in RFID Systems, 157–99. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0835-3_5.
Texte intégralMorselli, Alessandro, Roberto Armellin, Pierluigi Di Lizia et Franco Bernelli-Zazzera. « Rigorous Global Optimization for Collision Risk Assessment on Perturbed Orbits ». Dans Springer Optimization and Its Applications, 237–67. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41508-6_9.
Texte intégralGavrilova, Marina L., et Jon Rokne. « Collision Detection Optimization in a Multi-particle System ». Dans Lecture Notes in Computer Science, 105–14. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47789-6_11.
Texte intégralSathish, P., et D. Krishna Reddy. « Predictive Data Optimization of Doppler Collision Events for NavIC System ». Dans Numerical Optimization in Engineering and Sciences, 583–89. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3215-3_57.
Texte intégralYing, Tan. « Optimization Used in the Collision Problems and Their Application ». Dans 2012 International Conference on Information Technology and Management Science(ICITMS 2012) Proceedings, 725–29. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34910-2_82.
Texte intégralBing, He, Lv Yue et Jing Mi. « Self-collision Detection Optimization Method in the Arm Clothes Simulation ». Dans Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems, 634–41. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2666-9_64.
Texte intégralZhao, Wei, Li-Jun Li et Cheng-Shou Chen. « Research on Collision Detection Algorithm Based on Particle Swarm Optimization ». Dans Entertainment for Education. Digital Techniques and Systems, 602–9. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14533-9_61.
Texte intégralLiu, Lisang, Dongwei He, Ying Ma, Tianjian Li et Jianxing Li. « Research on Ships Collision Avoidance Based on Chaotic Particle Swarm Optimization ». Dans Advances in Smart Vehicular Technology, Transportation, Communication and Applications, 230–39. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70730-3_28.
Texte intégralVergé, Christelle, Jérôme Morio, Pierre Del Moral et Juan Carlos Dolado Pérez. « Probabilistic Safety Analysis of the Collision Between a Space Debris and a Satellite with an Island Particle Algorithm ». Dans Springer Optimization and Its Applications, 443–57. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41508-6_17.
Texte intégralTianzhu, Wang, Li Wenhui, Wang Yi, Ge Zihou et Han Dongfeng. « An Adaptive Stochastic Collision Detection Between Deformable Objects Using Particle Swarm Optimization ». Dans Lecture Notes in Computer Science, 450–59. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11732242_40.
Texte intégralActes de conférences sur le sujet "Collision optimization"
Altman, Eitan, Tania Jiménez, Nelson Vicuna et Richard Márquez. « Coordination games over Collision Channels ». Dans 6th International ICST Symposium on Modeling and Optimization. IEEE, 2008. http://dx.doi.org/10.4108/icst.wiopt2008.3224.
Texte intégralSalemme, Giuseppina, Roberto Armellin et Pierluigi Di Lizia. « Continuous-thrust collision avoidance manoeuvres optimization ». Dans AIAA Scitech 2020 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-0231.
Texte intégralLei, Gang, Chunyan Bao et Xianjue Liu. « Finite Element Analysis of Head-Ground Collision ». Dans 2008 International Workshop on Modelling, Simulation and Optimization (WMSO). IEEE, 2008. http://dx.doi.org/10.1109/wmso.2008.85.
Texte intégralZhang, Xiaojing, Alexander Liniger, Atsushi Sakai et Francesco Borrelli. « Autonomous Parking Using Optimization-Based Collision Avoidance ». Dans 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619433.
Texte intégralSislak, David, Premysl Volf, Michal Pechoucek, Niranjan Suri, David Nicholson et David Woodhouse. « Optimization-Based Collision Avoidance for Cooperating Airplanes ». Dans 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology. IEEE, 2009. http://dx.doi.org/10.1109/wi-iat.2009.180.
Texte intégralWang, Paul T. R., et Yoon K. Hong. « Collision awareness multiple access networks performance optimization ». Dans the 29th conference. New York, New York, USA : ACM Press, 1997. http://dx.doi.org/10.1145/268437.268744.
Texte intégralWang, Lixing, Yingjing Shi et Rui Li. « An image-based collision detection optimization algorithm ». Dans 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP). IEEE, 2015. http://dx.doi.org/10.1109/chinasip.2015.7230395.
Texte intégralBurnett, R. « Application of stochastic optimization to collision avoidance ». Dans Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1383888.
Texte intégralAllaire, Francois Charles Joseph, Mohammed Tarbouchi, Gilles Labonte et Vincent Roberge. « Real-time UAV path-terrain collision evaluation on FPGA ». Dans 2018 4th International Conference on Optimization and Applications (ICOA). IEEE, 2018. http://dx.doi.org/10.1109/icoa.2018.8370583.
Texte intégralAbuhamdah, Anmar, et Masri Ayob. « Multi-Neighbourhood Particle Collision Algorithm for solving course timetabling problems ». Dans 2009 2nd Conference on Data Mining and Optimization. IEEE, 2009. http://dx.doi.org/10.1109/dmo.2009.5341917.
Texte intégralRapports d'organisations sur le sujet "Collision optimization"
Woerner, Kyle. COLREGS-Compliant Autonomous Collision Avoidance Using Multi-Objective Optimization with Interval Programming. Fort Belvoir, VA : Defense Technical Information Center, juin 2014. http://dx.doi.org/10.21236/ada609415.
Texte intégral