Littérature scientifique sur le sujet « COMmunity interest based RECommendation system »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « COMmunity interest based RECommendation system ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "COMmunity interest based RECommendation system"
Zhang, Hong, Dechu Ge et Siyu Zhang. « Hybrid recommendation system based on semantic interest community and trusted neighbors ». Multimedia Tools and Applications 77, no 4 (20 mars 2017) : 4187–202. http://dx.doi.org/10.1007/s11042-017-4553-9.
Texte intégralZheng, Jianxing, Suge Wang, Deyu Li et Bofeng Zhang. « Personalized recommendation based on hierarchical interest overlapping community ». Information Sciences 479 (avril 2019) : 55–75. http://dx.doi.org/10.1016/j.ins.2018.11.054.
Texte intégralZheng, Jianxing, et Yanjie Wang. « Personalized Recommendations Based on Sentimental Interest Community Detection ». Scientific Programming 2018 (5 août 2018) : 1–14. http://dx.doi.org/10.1155/2018/8503452.
Texte intégralWenwen, Zhou. « Building an Urban Smart Community System Based on Association Rule Algorithms ». Security and Communication Networks 2022 (19 juillet 2022) : 1–11. http://dx.doi.org/10.1155/2022/8773259.
Texte intégralZhou, Tom, Hao Ma, Michael Lyu et Irwin King. « UserRec : A User Recommendation Framework in Social Tagging Systems ». Proceedings of the AAAI Conference on Artificial Intelligence 24, no 1 (5 juillet 2010) : 1486–91. http://dx.doi.org/10.1609/aaai.v24i1.7524.
Texte intégralGan, Mingxin, et Xiongtao Zhang. « Integrating Community Interest and Neighbor Semantic for Microblog Recommendation ». International Journal of Web Services Research 18, no 2 (avril 2021) : 54–75. http://dx.doi.org/10.4018/ijwsr.2021040104.
Texte intégralTang, Lei, Dandan Cai, Zongtao Duan, Junchi Ma, Meng Han et Hanbo Wang. « Discovering Travel Community for POI Recommendation on Location-Based Social Networks ». Complexity 2019 (12 février 2019) : 1–8. http://dx.doi.org/10.1155/2019/8503962.
Texte intégralShokrzadeh, Zeinab, Mohammad-Reza Feizi-Derakhshi, Mohammad-Ali Balafar et Jamshid Bagherzadeh Mohasefi. « Graph-Based Recommendation System Enhanced by Community Detection ». Scientific Programming 2023 (21 août 2023) : 1–12. http://dx.doi.org/10.1155/2023/5073769.
Texte intégralKumar, Akshi, et Saurabh Raj Sangwan. « Expert Finding in Community Question-Answering for Post Recommendation ». International Journal of Engineering & ; Technology 7, no 3.4 (25 juin 2018) : 151. http://dx.doi.org/10.14419/ijet.v7i3.4.16764.
Texte intégralLiu, Jing, et Yong Zhong. « Time-Weighted Community Search Based on Interest ». Applied Sciences 12, no 14 (13 juillet 2022) : 7077. http://dx.doi.org/10.3390/app12147077.
Texte intégralThèses sur le sujet "COMmunity interest based RECommendation system"
Khater, Shaymaa. « Personalized Recommendation for Online Social Networks Information : Personal Preferences and Location Based Community Trends ». Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/64283.
Texte intégralPh. D.
JAIN, ABHA. « INTEREST MINING FOR RECOMMENDATION SYSTEM IN VIRTUAL COMMUNITIES ». Thesis, 2015. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14297.
Texte intégralDr. AKSHI KUMAR Assistant Professor DEPARTMENT OF SOFTWARE ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY 2011
Chen, I.-Ru, et 陳怡如. « A Study on the Recommendation System Based on Interest Map ». Thesis, 2007. http://ndltd.ncl.edu.tw/handle/32724019438553890272.
Texte intégral國立交通大學
經營管理研究所
95
By applying the concept of social network into recommendation system, we convert the relationships between interests into ‘Interest Map’, just as the social network looks like. According to the association strength, the system could recommend users interests from interests. The goal of study is to verify if the recommendation system based on Interest Map is feasible, and to compare the relative advantages of immediate computation, and dynamic system over the general recommendation systems. The relationship between two interests, here we call it association, is built when someone likes these two interests at the same time. Repeating the process of association-building, we make Interest Map. After recommendation, which is selected from the strongest strength of associations, we compute the precision rate and recall rate to verify if the recommendation system based on Interest Map is feadible. Our study suggests that the feature of immediate computation is achieved by the dynamic algorithm, and meets the need of routine update of the general recommendation systems. By this process, users could get the newest recommendation at any time, and may enhance the recommendation and user trust. Besides, dynamic system improves the efficiency of recommendation system. The feature of dynamic system allows the recommendation system to check the Interest Map inside and update in time, and makes the recommendation system at a prepared condition to response users’ request. Owing to the reasons above, the recommendation system based on Interest Map is feasible and has some relative advantages over the general recommendation systems.
Wu, Chien-Liang, et 吳建良. « A Web Page Recommendation System Based on Clusters of Query Interest ». Thesis, 2002. http://ndltd.ncl.edu.tw/handle/90203635016331588291.
Texte intégral國立臺灣師範大學
資訊教育研究所
90
Most previous works on recommendation systems of web pages were designed based on collaborative filtering according to the clusters of user browsing behavior. In these approaches, a user only belongs to certain one cluster. If most users have multiple kinds of browsing interests, the number of users in the same cluster will be small and the information used for recommendation is limited. In addition, the information of users who have partially similar behavior is not considered. In this thesis, the strategies for constructing a query and recommendation system of web pages are proposed. First, the query keywords, browsed web pages, and user feedback values are extracted from web logs to be query transactions. A clustering algorithm is proposed to find the clusters of queries and related web pages, called the clusters of query interest , from the query transactions. A user who has multiple kinds of query interests can belong to more than one cluster. Then user query transactions are partitioned based on the clusters of query interest. In each partition, the association rules of queries and web pages are mined, where the support and confidence of rules are computed based on feedback values of users. According to the mined information, two main functions are provided in the system. A member user can ask a recommendation request. Based on clusters of query interest contained in the user profile, the highly associated web pages are recommended. On the other hand, an anonymous user can ask a query recommendation request to the system by giving query keywords. According to the cluster of query interest that the query keywords belong to, the highly associated web pages are returned as query results. Therefore, the query results will be more simplified and meet the requirements of most users.
Yu, Wei Ting, et 魏廷宇. « The Study of Virtual Community Peer Recommendation System Based on Social Relationship ». Thesis, 2005. http://ndltd.ncl.edu.tw/handle/44751520102638124880.
Texte intégral輔仁大學
資訊管理學系
93
Knowledge has become the most important production element in the era of knowledge economy. Knowledge contains two parts - explicit knowledge and implicit one. If and only if we understand the two parts of knowledge, we say we understand knowledge. As the progress of information technology, virtual community in the Internet becomes the main platform to share knowledge. However, because of the characters of the post in the virtual community, the contented-based recommendation system does not fit. Moreover, collaborative recommendation system gets the problem called “ratings sparsity”. In the other way, the current recommendation systems do not consider the social relationship which is an important issue when people share knowledge. This thesis implemented 6 recommendation modules based on 6 measures which are used to estimate the social relationships between two members in a forum – a kind of virtual community in the Internet. When some member A creates a new topic, the recommendation modules will recommend people who are willing to discuss with A. This thesis used the data of a virtual community to understand the forecasting ability of the 6 recommendation modules based on social relationships. The experiment result shows that the greatest forecasting ability of recommendation module is based on the “mostpost” social relationship measure. In addition, computing relationship in the light of some specific members, not all of members, can increase the forecasting ability of recommendation modules, no matter based on what kind of measures.
Livres sur le sujet "COMmunity interest based RECommendation system"
Tietje, Christian, et Andrej Lang. Community Interests in World Trade Law. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198825210.003.0012.
Texte intégralGalera, Giulia. Social and Solidarity Co-operatives. Sous la direction de Jonathan Michie, Joseph R. Blasi et Carlo Borzaga. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199684977.013.12.
Texte intégralGlazov, M. M. Electron & ; Nuclear Spin Dynamics in Semiconductor Nanostructures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.001.0001.
Texte intégralWikle, Christopher K. Spatial Statistics. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.710.
Texte intégralChapitres de livres sur le sujet "COMmunity interest based RECommendation system"
He, Jianming, et Wesley W. Chu. « Design Considerations for a Social Network-Based Recommendation System (SNRS) ». Dans Community-Built Databases, 73–106. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19047-6_4.
Texte intégralGurini, Davide Feltoni, Fabio Gasparetti, Alessandro Micarelli et Giuseppe Sansonetti. « iSCUR : Interest and Sentiment-Based Community Detection for User Recommendation on Twitter ». Dans User Modeling, Adaptation, and Personalization, 314–19. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08786-3_27.
Texte intégralInterdonato, Roberto, et Andrea Tagarelli. « Personalized Recommendation of Points-of-Interest Based on Multilayer Local Community Detection ». Dans Lecture Notes in Computer Science, 552–71. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67217-5_33.
Texte intégralWang, Yuehua, Zhinong Zhong, Anran Yang et Ning Jing. « A Deep Point-of-Interest Recommendation System in Location-Based Social Networks ». Dans Data Mining and Big Data, 547–54. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93803-5_51.
Texte intégralRoy, Sohom, Sayan Kundu, Dhrubasish Sarkar, Chandan Giri et Premananda Jana. « Community Detection and Design of Recommendation System Based on Criminal Incidents ». Dans Advances in Intelligent Systems and Computing, 71–80. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7834-2_7.
Texte intégralSantos, Filipe, Ana Almeida, Constantino Martins, Paulo Oliveira et Ramiro Gonçalves. « Tourism Recommendation System based in User Functionality and Points-of-Interest Accessibility levels ». Dans Advances in Intelligent Systems and Computing, 275–84. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48523-2_26.
Texte intégralRavi, Logesh, V. Subramaniyaswamy, V. Vijayakumar, Rutvij H. Jhaveri et Jigarkumar Shah. « Hybrid User Clustering-Based Travel Planning System for Personalized Point of Interest Recommendation ». Dans Advances in Intelligent Systems and Computing, 311–21. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9953-8_27.
Texte intégralUgli, Sadriddinov Ilkhomjon Rovshan, Doo-Soon Park, Daeyoung Kim, Yixuan Yang, Sony Peng et Sophort Siet. « Movie Recommendation System Using Community Detection Based on the Girvan–Newman Algorithm ». Dans Advances in Computer Science and Ubiquitous Computing, 599–605. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1252-0_80.
Texte intégralTang, Tiffany, et Gordon McCalla. « Beyond Learners’ Interest : Personalized Paper Recommendation Based on Their Pedagogical Features for an e-Learning System ». Dans PRICAI 2004 : Trends in Artificial Intelligence, 301–10. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28633-2_33.
Texte intégralMassimo, David, et Francesco Ricci. « Next-POI Recommendations Matching User’s Visit Behaviour ». Dans Information and Communication Technologies in Tourism 2021, 45–57. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65785-7_4.
Texte intégralActes de conférences sur le sujet "COMmunity interest based RECommendation system"
« MULTI-INTEREST COMMUNITIES AND COMMUNITY-BASED RECOMMENDATION ». Dans 3rd International Conference on Web Information Systems and Technologies. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0001273800370045.
Texte intégralAhmed, Kazi Wasif, Md Mamunur Rashid, Md Kamrul Hasan et Hasan Mahmud. « Cohesion based personalized community recommendation system ». Dans 2015 18th International Conference on Computer and Information Technology (ICCIT). IEEE, 2015. http://dx.doi.org/10.1109/iccitechn.2015.7488038.
Texte intégralNandagawali, Priyanka A., et Jaikumar M. Patil. « Community based recommendation system based on products ». Dans 2014 International Conference on Power Automation and Communication (INPAC). IEEE, 2014. http://dx.doi.org/10.1109/inpac.2014.6981153.
Texte intégralJain, Shainee, Tejaswi Pawar, Heth Shah, Omkar Morye et Bhushan Patil. « Video Recommendation System Based on Human Interest ». Dans 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT). IEEE, 2019. http://dx.doi.org/10.1109/iciict1.2019.8741428.
Texte intégralYu, Yunfei, et Yinghua Zhou. « Research on recommendation system based on interest clustering ». Dans 11TH ASIAN CONFERENCE ON CHEMICAL SENSORS : (ACCS2015). Author(s), 2017. http://dx.doi.org/10.1063/1.4977377.
Texte intégralLi, Chong, Kunyang Jia, Dan Shen, C. J. Richard Shi et Hongxia Yang. « Hierarchical Representation Learning for Bipartite Graphs ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/398.
Texte intégralByun, Sung-Woo, So-Min Lee, Seok-Pil Lee, Kwang-Yong Kim et Cho Kee-Seong. « A recommendation system based on object of the interest ». Dans 2016 18th International Conference on Advanced Communication Technology (ICACT). IEEE, 2016. http://dx.doi.org/10.1109/icact.2016.7423521.
Texte intégralByun, Sung-Woo, So-Min Lee, Seok-Pil Lee, Kwang-Yong Kim et Kee-Seong Cho. « A recommendation system based on object of the interest ». Dans 2016 18th International Conference on Advanced Communication Technology (ICACT). IEEE, 2016. http://dx.doi.org/10.1109/icact.2016.7423522.
Texte intégralYin, Bin, Yujiu Yang et Wenhuang Liu. « ICSRec : Interest circle-based recommendation system incorporating social propagation ». Dans 2014 4th IEEE International Conference on Information Science and Technology (ICIST). IEEE, 2014. http://dx.doi.org/10.1109/icist.2014.6920377.
Texte intégralZhou, Xuan, Xiaoming Wang, Guangyao Pang, Yaguang Lin, Pengfei Wan et Meiling Ge. « Dual Attention-based Interest Network for Personalized Recommendation System ». Dans 2021 IEEE 15th International Conference on Big Data Science and Engineering (BigDataSE). IEEE, 2021. http://dx.doi.org/10.1109/bigdatase53435.2021.00010.
Texte intégralRapports d'organisations sur le sujet "COMmunity interest based RECommendation system"
Yuebin, Xu. Development and Performance of the Elderly Care System in the People’s Republic of China. Asian Development Bank, août 2021. http://dx.doi.org/10.22617/wps210303-2.
Texte intégralFord, Adam T., Marcel Huijser et Anthony P. Clevenger. Long-term responses of an ecological community to highway mitigation measures. Nevada Department of Transportation, juin 2022. http://dx.doi.org/10.15788/ndot2022.06.
Texte intégralAharoni, Asaph, Zhangjun Fei, Efraim Lewinsohn, Arthur Schaffer et Yaakov Tadmor. System Approach to Understanding the Metabolic Diversity in Melon. United States Department of Agriculture, juillet 2013. http://dx.doi.org/10.32747/2013.7593400.bard.
Texte intégralRosen, Michael, C. Matthew Stewart, Hadi Kharrazi, Ritu Sharma, Montrell Vass, Allen Zhang et Eric B. Bass. Potential Harms Resulting From Patient-Clinician Real-Time Clinical Encounters Using Video-based Telehealth : A Rapid Evidence Review. Agency for Healthcare Research and Quality (AHRQ), septembre 2023. http://dx.doi.org/10.23970/ahrqepc_mhs4telehealth.
Texte intégralDoo, Johnny. Unsettled Issues Concerning eVTOL for Rapid-response, On-demand Firefighting. SAE International, août 2021. http://dx.doi.org/10.4271/epr2021017.
Texte intégralBurns, Malcom, et Gavin Nixon. Literature review on analytical methods for the detection of precision bred products. Food Standards Agency, septembre 2023. http://dx.doi.org/10.46756/sci.fsa.ney927.
Texte intégral