Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Complexe Au(I)-phosphine.

Articles de revues sur le sujet « Complexe Au(I)-phosphine »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Complexe Au(I)-phosphine ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Zhang, Jie, Jiarui Chang, Ting Liu, Bula Cao, Yazhou Ding, and Xuenian Chen. "Application of POCOP Pincer Nickel Complexes to the Catalytic Hydroboration of Carbon Dioxide." Catalysts 8, no. 11 (2018): 508. http://dx.doi.org/10.3390/catal8110508.

Texte intégral
Résumé :
The reduction of CO2 is of great importance. In this paper, different types of bis(phosphinite) (POCOP) pincer nickel complexes, [2,6-(R2PO)2C6H3]NiX (R = tBu, iPr, Ph; X = SH, N3, NCS), were applied to the catalytic hydroboration of CO2 with catecholborane (HBcat). It was found that pincer complexes with tBu2P or iPr2P phosphine arms are active catalysts for this reaction in which CO2 was successfully reduced to a methanol derivative (CH3OBcat) with a maximum turnover frequency of 1908 h−1 at room temperature under an atmospheric pressure of CO2. However, complexes with phenyl-substituted pho
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wawrzyniak, Piotr, Amy L. Fuller, Alexandra M. Z. Slawin, and Petr Kilian. "Intramolecular Phosphine−Phosphine Donor−Acceptor Complexes." Inorganic Chemistry 48, no. 6 (2009): 2500–2506. http://dx.doi.org/10.1021/ic801833a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Guidone, Stefano, Fady Nahra, Alexandra M. Z. Slawin, and Catherine S. J. Cazin. "Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite." Beilstein Journal of Organic Chemistry 11 (September 1, 2015): 1520–27. http://dx.doi.org/10.3762/bjoc.11.166.

Texte intégral
Résumé :
The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cuypers, Ruud, Ernst J. R. Sudhölter, and Han Zuilhof. "Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes." ChemPhysChem 11, no. 10 (2010): 2230–40. http://dx.doi.org/10.1002/cphc.201000084.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kampmann, Sven S., Nikki Y. T. Man, Allan J. McKinley, George A. Koutsantonis, and Scott G. Stewart. "Exploring the Catalytic Reactivity of Nickel Phosphine–Phosphite Complexes." Australian Journal of Chemistry 68, no. 12 (2015): 1842. http://dx.doi.org/10.1071/ch15459.

Texte intégral
Résumé :
In this study, we present an investigation into various nickel phosphite and phosphite–phosphine complexes for use in the Mizoroki–Heck and Suzuki–Miyaura cross-coupling reactions and the ammonia arylation reaction. In these coupling reactions, it was discovered that the Ni[P(OEt)3]4, (dppf)Ni[P(OPh)3]2, and (binap)Ni[P(OPh)3]2 catalysts were the most effective. In addition, an optimisation process for these catalytic systems as well as functional group compatibility are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Arumugam, Ramar, Bhaskaran Shankar, Ramasamy Shanmugam, T. Arumuganathan, and Malaichamy Sathiyendiran. "Phosphine oxide-based tricarbonylrhenium(i) complexes from phosphine/phosphine oxide and dihydroxybenzoquinones." Dalton Transactions 47, no. 39 (2018): 13894–901. http://dx.doi.org/10.1039/c8dt02985g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chahma, M'hamed, Daniel JT Myles, and Robin G. Hicks. "Synthesis, characterization, and coordination chemistry of phosphines with ethylenedioxythiophene substituents." Canadian Journal of Chemistry 83, no. 2 (2005): 150–55. http://dx.doi.org/10.1139/v05-004.

Texte intégral
Résumé :
The preparation of several new phosphines bearing one or more 3,4-ethylenedioxythiophene (EDOT) units as substituents linked at the 2-thienyl position is described. The phosphines were prepared by reaction of lithiated EDOT intermediates with appropriate chlorophosphines to afford (3,4-ethylenedioxy-2-thienyl)diphenylphosphine (1), (bis(3,4-ethylenedioxy-2-thienyl)phenylphosphine (2), tris(3,4-ethylenedioxy-2-thienyl)phosphine (3), 2,5-bis(diphenylphosphino)-3,4-ethylenedioxythiophene (4), and 2-diphenylphosphino-5-mesitylthio-3,4-ethylenedioxythiophene (5). Molybdenum carbonyl complexes of co
Styles APA, Harvard, Vancouver, ISO, etc.
8

Inoue, Hidenari, Masahiro Sasagawa, and Ekkehard Fluck. "31P-NMR-und 57Fe-Mößbauer-spektroskopische Untersuchungen an Pentacyano(phosphan oder phosphit)ferraten(II) / 31P NMR and 57Fe Mössbauer Spectroscopic Studies on Pentacyano(phosphane or phosphite)ferrates(II)." Zeitschrift für Naturforschung B 40, no. 1 (1985): 22–25. http://dx.doi.org/10.1515/znb-1985-0107.

Texte intégral
Résumé :
The 31P{1H}NMR spectra for a series of pentacyanoferrates(II) of the type Na3[Fe(CN)5L] (L = phosphine or phosphite) have been measured. A low field chemical shift range of 48.1-88.7 ppm for phosphine complexes and of 32.5-48.4 ppm for phosphite complexes is observed when one compares free vs. coordinated ligands. The correlation between chemical shifts in the 31P NMR spectra and isomeric shifts in the Mössbauer spectra is investigated and discussed
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jiao, Yunzhe, William W. Brennessel, and William D. Jones. "A tris(pyrazolyl)borate rhodium phosphite complex that undergoes an Arbusov-like rearrangement." Acta Crystallographica Section C Crystal Structure Communications 69, no. 9 (2013): 939–42. http://dx.doi.org/10.1107/s0108270113015953.

Texte intégral
Résumé :
Tp′Rh[P(OMe)3](Me)H, loses methane in pentane solution containing CH2F2to give the scorpionate complex bis(μ-dimethyl phosphito)-κ2P:O;κ2O:P-bis{methyl[tris(3,5-dimethyl-1H-pyrazol-1-yl-κN2)borato]rhodium(III)}, [Rh2(CH3)2(C2H6O3P)2(C15H22BN6)2], in which the phosphine O—Me bond is cleaved. The product is dimeric and resembles the Arbusov-type rearrangement product known to form from trimethyl phosphite.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Coyle, Randy J., Yuri L. Slovokhotov, Mikhail Yu Antipin, and Vladimir V. Grushin. "Palladium (II) complexes of hybrid phosphine—phosphine oxide ligands." Polyhedron 17, no. 18 (1998): 3059–70. http://dx.doi.org/10.1016/s0277-5387(98)00061-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Louie, Janis, and Robert H. Grubbs. "Reaction of Diazoalkanes with Iron Phosphine Complexes Affords Novel Phosphazine Complexes." Organometallics 20, no. 3 (2001): 481–84. http://dx.doi.org/10.1021/om000586y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Platt, Andrew W. G. "Lanthanide phosphine oxide complexes." Coordination Chemistry Reviews 340 (June 2017): 62–78. http://dx.doi.org/10.1016/j.ccr.2016.09.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zanchin, Giorgia, Alessia Gavezzoli, Fabio Bertini, Giovanni Ricci, and Giuseppe Leone. "Homo- and Copolymerization of Ethylene with Norbornene Catalyzed by Vanadium(III) Phosphine Complexes." Molecules 24, no. 11 (2019): 2088. http://dx.doi.org/10.3390/molecules24112088.

Texte intégral
Résumé :
Herein, we report the homo- and co-polymerization of ethylene (E) with norbornene (NB) catalyzed by vanadium(III) phosphine complexes of the type VCl3(PMenPh3-n)2 [n = 2 (1a), 1 (1b)] and VCl3(PR3)2 [R = phenyl (Ph, 1c), cyclohexyl (Cy, 1d), tert-butyl (tBu, 1e)]. In the presence of Et2AlCl and Cl3CCOOEt (ETA), 1a–1e exhibit good activities for the polymerization of ethylene, affording linear, semicrystalline PEs with a melting temperature of approximately 130 °C. Mainly alternating copolymers with high comonomer incorporation were obtained in the E/NB copolymerization. A relationship was foun
Styles APA, Harvard, Vancouver, ISO, etc.
14

Bedford, Robin B, and Michael E Blake. "Mixed Phosphite-Phosphine and Phosphinite-Phosphine Palladacyclic Complexes as Highly Active Catalysts for the Amination of Aryl Chlorides." Advanced Synthesis & Catalysis 345, no. 910 (2003): 1107–10. http://dx.doi.org/10.1002/adsc.200303068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Römbke, Patric, Annette Schier, and Hubert Schmidbaur. "(Phosphine)Silver(I) Sulfonate Complexes." Zeitschrift für Naturforschung B 58, no. 1 (2003): 168–72. http://dx.doi.org/10.1515/znb-2003-0126.

Texte intégral
Résumé :
Abstract Phosphine)silver(I) organosulfonate complexes of the type (R3P)AgOS(O)2R’ have been prepared in good yields from the corresponding silver sulfonates and tertiary phosphines in dichloromethane solution [R3 = Ph3, Ph2(2-Py), Me2Ph, with R’ = 4-Me-C6H4; R = Ph, R’ = Et and 2,5-Me2-C6H4]. If ethanol is present in the reaction mixture, the products contain one equivalent of ethanol. The crystal structures of (Ph3P)AgOS(O)2(C6H4-4-Me)(EtOH) (1), and (Me2PhP)AgOS(O)2(C6H4-4- Me) (5) have been determined. Complex 1 is present as a dimer in which the monomeric units feature intermolecular Ag-O
Styles APA, Harvard, Vancouver, ISO, etc.
16

Gamage, Chaminda P., Ryan C. Bailey, Ellen A. Keiter, et al. "Dangling phosphine complexes: Phosphine exchange in pentacarbonyl tungsten complexes of bis(diphenylphosphinomethyl)phenylphosphine." Journal of Organometallic Chemistry 794 (October 2015): 258–65. http://dx.doi.org/10.1016/j.jorganchem.2015.07.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Monkowius, Uwe, Stefan Nogai, and Hubert Schmidbaur. "Ligand Properties of Tri(2-thienyl)- and Tri(2-furyl)phosphine and -arsine (2-C4H3E)3P/As (E = O, S) in Gold(I) Complexes." Zeitschrift für Naturforschung B 58, no. 8 (2003): 751–58. http://dx.doi.org/10.1515/znb-2003-0806.

Texte intégral
Résumé :
Tri(2-thienyl)- and tri(2-furyl)phosphine and -arsine (L) have been introduced as ligands to gold(I) chloride and acetate (AuX). Structural studies have shown that in the 1:1 complexes of the type L-Au-X the gold atoms are bound exclusively to the phosphorus/arsenic centers without any intraor intermolecular approach of the donor atoms of the three heterocycles towards the metal atoms. Intermolecular aurophilic bonding is found in the crystals of the [tri(thienyl)phosphine]gold acetate complex, but is absent in crystals of the chloride complexes. The phosphines L have been quaternized with met
Styles APA, Harvard, Vancouver, ISO, etc.
18

Davison, Alan, James F. Kronauge, Alun G. Jones, Ronald M. Pearlstein, and John R. Thornback. "Technetium-99 NMR spectroscopy of technetium(I) phosphine and phosphite complexes." Inorganic Chemistry 27, no. 18 (1988): 3245–46. http://dx.doi.org/10.1021/ic00291a043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Schmidbaur, Hubert, Gabriele Weidenhiller, Aref A. M. Aly, Oliver Steigelmann, and Gerhard Müller. "Gold(I)-Komplexe sekundärer Phosphine / Gold(I) Complexes of Secondary Phosphines." Zeitschrift für Naturforschung B 44, no. 12 (1989): 1503–8. http://dx.doi.org/10.1515/znb-1989-1206.

Texte intégral
Résumé :
Gold(I) complexes with secondary phosphines R2PH (la—d) of the type R2PH · AuCl (2a—d) have been obtained in good yield from reactions of (carbonyl)chlorogold(I) and the corresponding ligand in diethylether. Both compounds 2a, b bearing aromatic substituents with R = 2,4,6-trimethylphenyl (mesityl) and 2-methylphenyl (o-tolyl), and compounds 2c, d with the bulky alkyl substituents R = t-butyl and R = cyclohexyl, resp., are air-stable crystalline solids. — The coordination compounds have been characterized by NMR and IR data, and — in the cases of 2b and 2c — by single crystal X-ray diffraction
Styles APA, Harvard, Vancouver, ISO, etc.
20

Stará, Irena G., Angelina Andronova, Adrian Kollárovič, et al. "Enantioselective [2+2+2] cycloisomerisation of alkynes in the synthesis of helicenes: The search for effective chiral ligands." Collection of Czechoslovak Chemical Communications 76, no. 12 (2011): 2005–22. http://dx.doi.org/10.1135/cccc2011177.

Texte intégral
Résumé :
The enantioselective [2+2+2] cycloisomerisation of the aromatic triynes under nickel(0) catalysis to afford nonracemic [6]- and [7]helicene derivatives has been systematically studied. A collection of mono- and bidentate phosphines, phosphites, phosphinites and phosphinous amides possessing stereogenic units such as chiral centre, axis or plane (or their combinations) has been tested and axially chiral binaphthyl-derived monodentate MOP-type phosphine ligands were the optimal class of ligands. Nickel complexes of these ligands afforded nonracemic tetrahydro[6]helicene in up to 64% ee in a mode
Styles APA, Harvard, Vancouver, ISO, etc.
21

Itazaki, Masumi, Shinya Katsube, Masahiro Kamitani, and Hiroshi Nakazawa. "Synthesis of vinylphosphines and unsymmetric diphosphines: iron-catalyzed selective hydrophosphination reaction of alkynes and vinylphosphines with secondary phosphines." Chemical Communications 52, no. 15 (2016): 3163–66. http://dx.doi.org/10.1039/c5cc10185a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Seewald, Patricia A., Graham S. White, and Douglas W. Stephan. "Cationic complexes of titanium(III); phosphine substitution reactions." Canadian Journal of Chemistry 66, no. 5 (1988): 1147–52. http://dx.doi.org/10.1139/v88-188.

Texte intégral
Résumé :
The Ti(III) compound [Cp2Ti(CH3CN2)2]2[ZnCl4], 1, has been prepared and crystallizes in the space group Pbca with a = 28.444(11) Å, b = 15.370(4) Å, c = 15.206(5) Å, and Z = 8. The BPh4 salt (i.e., [Cp2Ti(CH3CN)2][BPh4], 2) is a convenient precursor for Ti(III) cationic phosphine complexes. Reaction of 2 with several monodentate phosphines has been monitored by epr spectroscopy. Compound 2 reacts with PMe3 in a stepwise fashion, to replace the coordinated CH3CN molecules, yielding [Cp2Ti(CH3CN)(PMe3)][BPh4], 3, and [Cp2Ti(PMe3)2][BPh4], 4. Complex 4 exhibits a quasi-reversible cyclic voltammog
Styles APA, Harvard, Vancouver, ISO, etc.
23

Kessler, Julie A., and Vlad M. Iluc. "NI(ii) phosphine and phosphide complexes supported by a PNP-pyrrole pincer ligand." Dalton Transactions 46, no. 36 (2017): 12125–31. http://dx.doi.org/10.1039/c7dt02784b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Demchuk, Oleg M., Katarzyna Kielar, and K. Michał Pietrusiewicz. "Rational design of novel ligands for environmentally benign cross-coupling reactions." Pure and Applied Chemistry 83, no. 3 (2011): 633–44. http://dx.doi.org/10.1351/pac-con-10-08-06.

Texte intégral
Résumé :
Transition-metal (TM) complexes of new phosphines, readily prepared by a straight-forward three-step modular synthesis, were successfully employed in difficult cross-coupling reactions conducted under mild conditions (water, “open-flask”, low temperature) that aspire to meet green chemistry criteria. High yielding catalyzed by bismuth or rhodium complexes oxidative arylation of naphthoquinone gave the key 2-arylnaphthoquinone intermediates for facile bismuth triflate-catalyzed Michael addition of secondary phosphine oxides. Subsequent O-methylation and reductions of the resulting products gave
Styles APA, Harvard, Vancouver, ISO, etc.
25

Maccaroni, Elisabetta, Hailin Dong, Olivier Blacque, Helmut W. Schmalle, Christian M. Frech, and Heinz Berke. "Water soluble phosphine rhenium complexes." Journal of Organometallic Chemistry 695, no. 4 (2010): 487–94. http://dx.doi.org/10.1016/j.jorganchem.2009.11.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Jarrett, Penelope S., and Peter J. Sadler. "Nickel(II) bis(phosphine) complexes." Inorganic Chemistry 30, no. 9 (1991): 2098–104. http://dx.doi.org/10.1021/ic00009a028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Liang, Lan-Chang, Liang-Chien Cheng, Tzung-Ling Tsai, Ching-Han Hu, and Wen-Hsin Guo. "Biphenolate Phosphine Complexes of Tantalum." Inorganic Chemistry 48, no. 13 (2009): 5697–703. http://dx.doi.org/10.1021/ic802125z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Elliot, D. J., D. G. Holah, and A. N. Hughes. "New cobalt-carbonyl-Phosphine complexes." Inorganica Chimica Acta 142, no. 2 (1988): 195–96. http://dx.doi.org/10.1016/s0020-1693(00)81558-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Liang, Lan-Chang, Wei-Ying Lee, and Chen-Hsiung Hung. "Amido Phosphine Complexes of Zinc." Inorganic Chemistry 42, no. 18 (2003): 5471–73. http://dx.doi.org/10.1021/ic0346228.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

PARKIN,, GERARD. "TERTIARY PHOSPHINE COMPLEXES OF TUNGSTEN." Reviews in Inorganic Chemistry 7, no. 4 (1985): 251–98. http://dx.doi.org/10.1515/revic.1985.7.4.251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ditzel, EJ, and GB Robertson. "The Reaction of (PPri3)2H2Cl2Ir With Phosphines: Crystal and Molecular Structures of mer-cis-(PMe2Ph)2(PPri3)-cis-Cl2HIrIII and mer-cis-(PMe2Ph)2(PPri3)-trans-Cl2HIrIII." Australian Journal of Chemistry 46, no. 4 (1993): 529. http://dx.doi.org/10.1071/ch9930529.

Texte intégral
Résumé :
Ambient temperature reactions of the complex (PPri3)2H2Cl2IrIV (1) with ethyl-substituted monodentate phosphine ligands are shown to yield different product types to those obtained both with methyl-substituted analogues and with phosphine itself. With the phosphines PH3 and PMe3-nPhn (n = 0, 1) there is spontaneous reaction to give the complexes mer-trans-(Ppri3)2(PR3)H-trans-Cl2IrIII, whereas with PEt3-nPhn (n = 0-2) the reaction yields mer-cis-(PR3)2(PPri3)H-trans-Cl2IrIII complexes. Under reflux the phosphines PMe3 and PMe2Ph also yield mer-cis-(PR3)2(PPri3)H-trans-Cl2IrIII complexes [PR3 =
Styles APA, Harvard, Vancouver, ISO, etc.
32

Li, Lijuan, Nada Reginato, Michael Urschey, Mark Stradiotto, and John D. Liarakos. "The synthesis and structural characterization of linear and macrocyclic bis(dinitrosyliron) complexes supported by bis(phosphine) bridging ligands." Canadian Journal of Chemistry 81, no. 6 (2003): 468–75. http://dx.doi.org/10.1139/v03-040.

Texte intégral
Résumé :
Reactions involving Fe(NO)2(CO)2 and the bis(phosphine) ligands bis(diphenylphosphino)methane (DPPM), bis(diphenylphosphino)acetylene (DPPA), 1,6-bis(diphenylphosphino)hexane (DPPH), and 1,4-bis(diphenyl phosphino)benzene (DPPB) have been examined. From these reactions, the mononuclear complex, Fe(κ1-DPPM)(NO)2(CO) 3, linear dinuclear species of the type Fe2(µ-L)(NO)4(CO)2 (L = Ph2PCH2PPh2 4, Ph2PC[Formula: see text]CPPh2 5, Ph2PCH2(CH3)4CH2PPh2 6, and Ph2P(p-C6H4)PPh2 7), and macrocyclic dinuclear species of the type Fe2(µ-L)2(NO)4 (L = Ph2PCH2PPh2 8 and Ph2PC[Formula: see text]CPPh2 9) were
Styles APA, Harvard, Vancouver, ISO, etc.
33

Lee, Kyounghoon, Curtis E. Moore, and Christine M. Thomas. "Synthesis of Ni(II) Complexes Supported by Tetradentate Mixed-Donor Bis(amido)/Phosphine/Phosphido Ligands by Phosphine Substituent Elimination." Organometallics 39, no. 11 (2020): 2053–56. http://dx.doi.org/10.1021/acs.organomet.0c00286.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

León, Félix, Aleix Comas-Vives, Eleuterio Álvarez, and Antonio Pizzano. "A combined experimental and computational study to decipher complexity in the asymmetric hydrogenation of imines with Ru catalysts bearing atropisomerizable ligands." Catalysis Science & Technology 11, no. 7 (2021): 2497–511. http://dx.doi.org/10.1039/d0cy02390f.

Texte intégral
Résumé :
RuCl<sub>2</sub>(P–OP)(N–N) complexes containing an atropisomerizable phosphine–phosphite and a chiral diamine are effective catalyst precursors for the asymmetric hydrogenation of N-aryl imines following an outer-sphere mechanism.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Pàmies, Oscar, Gemma Net, Aurora Ruiz, and Carmen Claver. "Asymmetric hydroformylation of styrene catalyzed by furanoside phosphine–phosphite–Rh(I) complexes." Tetrahedron: Asymmetry 12, no. 24 (2002): 3441–45. http://dx.doi.org/10.1016/s0957-4166(02)00030-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Agh-Atabay, N., F. M. Ashmawy, C. A. McAuliffe, and W. E. Hill. "Synthesis and characterisation of oxotungsten(VI) complexes of phosphines and phosphine oxides." Inorganica Chimica Acta 104, no. 2 (1985): 73–76. http://dx.doi.org/10.1016/s0020-1693(00)86418-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Inoue, Hidenari, Tomoko Takei, Gernot Heckmann, and Ekkehard Fluck. "Spectroscopic Characterization of trans-Fe(CO)3L2 Complexes (L = Phosphine or Phosphite)." Zeitschrift für Naturforschung B 46, no. 5 (1991): 682–86. http://dx.doi.org/10.1515/znb-1991-0521.

Texte intégral
Résumé :
A series of disubstituted trans-Fe(CO)3L2 complexes (L = phosphine or phosphite) have been characterized by infrared, 57Fe Mössbauer, and 31P NMR spectroscopy. The triple-bond nature of the carbonyl ligands of trans-Fe(CO)3L2 is strengthened with increasing ironto-phosphorus π back-donation. A linear correlation between the isomer shifts and the quadrupole splittings has demonstrated that the phosphorus-to-iron σ donation is offset by the iron-to-phosphorus π back-donation. The linear dependence of the coordination shifts on the isomer shifts has revealed that the iron-to-phosphorus π back-don
Styles APA, Harvard, Vancouver, ISO, etc.
38

Tzeng, Biing-Chiau, Johann Zank, Annette Schier, and Hubert Schmidbaur. "The Structural Chemistry of GoId(I) Quinoline-2-thiolate and Iodide Complexes of Polytertiary Phosphines." Zeitschrift für Naturforschung B 54, no. 7 (1999): 825–31. http://dx.doi.org/10.1515/znb-1999-0701.

Texte intégral
Résumé :
Treatment of (chloro)gold(I) complexes of di- and tetra-tertiary phosphines with equivalent quantities of sodium quinoline-2-thiolate in methanol / dichloromethane affords the corresponding (phosphine)gold(I) quinoline-2-thiolates in high yields. The di- and tetranuclear complexes, respectively, of α, ω-bis(diphenylphosphino)-propane (1), -butane (2) and -pentane (3) and of tris(2-diphenylphosphino-ethyl)phosphine (4) have been obtained as crystalline solids, and the structures of 2 and 4 have been determined by single crystal X-ray diffraction studies. Unexpectedly, the molecules of 2 are loo
Styles APA, Harvard, Vancouver, ISO, etc.
39

Facchetti, Giorgio, Michael S. Christodoulou, Eleonora Binda, Marco Fusè, and Isabella Rimoldi. "Asymmetric Hydrogenation of 1-aryl substituted-3,4-Dihydroisoquinolines with Iridium Catalysts Bearing Different Phosphorus-Based Ligands." Catalysts 10, no. 8 (2020): 914. http://dx.doi.org/10.3390/catal10080914.

Texte intégral
Résumé :
Starting from the chiral 5,6,7,8-tetrahydroquinolin-8-ol core, a series of amino-phosphorus-based ligands was realized. The so-obtained amino-phosphine ligand (L1), amino-phosphinite (L2) and amino-phosphite (L3) were evaluated in iridium complexes together with the heterobiaryl diphosphines tetraMe-BITIOP (L4), Diophep (L5) and L6 and L7 ligands, characterized by mixed chirality. Their catalytic performance in the asymmetric hydrogenation (AH) of the model substrate 6,7-dimethoxy-1-phenyl-3,4-dihydroisoquinoline 1a led us to identify Ir-L4 and Ir-L5 catalysts as the most effective. The applic
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bhadbhade, Mohan M., Leslie D. Field, Ryan Gilbert-Wilson, Ruth W. Guest, and Paul Jensen. "Ruthenium Hydride Complexes of the Hindered Phosphine Ligand Tris(3-diisopropylphosphinopropyl)phosphine." Inorganic Chemistry 50, no. 13 (2011): 6220–28. http://dx.doi.org/10.1021/ic200492w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Groux, Laurent F., Francine Bélanger-Gariépy, and Davit Zargarian. "Phosphino-indenyl complexes of nickel(II)." Canadian Journal of Chemistry 83, no. 6-7 (2005): 634–39. http://dx.doi.org/10.1139/v05-079.

Texte intégral
Résumé :
The BH3-protected phosphinoindenyl ligand indenyl(CH2)2PPh2·BH3 was used in the preparation of (η5/3:η0-indenyl(CH2)2PPh2·BH3)Ni(PPh3)Cl, which has been characterized by NMR spectroscopy and X-ray diffraction studies. On the other hand, all attempts at preparing the closely related complex (η5/3:η1-indenyl(CH2)2PPh2)NiCl, in which the tethered phosphine moiety is coordinated to the Ni centre, were unsuccessful. One of these unsuccessful attempts yielded instead the novel indenyl-PCP pincer complex {κP,κC,κP-1,3-(CH2CH2PPh2)2-2-indenyl}NiCl, which has been characterized by X-ray diffraction stu
Styles APA, Harvard, Vancouver, ISO, etc.
42

Matsumura, Mio, Mizuki Yamada, Atsuya Muranaka, et al. "Synthesis and photophysical properties of novel benzophospholo[3,2-b]indole derivatives." Beilstein Journal of Organic Chemistry 13 (October 30, 2017): 2304–9. http://dx.doi.org/10.3762/bjoc.13.226.

Texte intégral
Résumé :
The parent benzophospholo[3,2-b]indole was prepared by the reaction of dichlorophenylphosphine with a dilithium intermediate, which was prepared in two steps from 2-ethynyl-N,N-dimethylaniline. Using the obtained benzophosphole-fused indole as a common starting material, simple modifications were carried out at the phosphorus center of the phosphole, synthesizing various functionalized analogs. The X-ray structure analysis of trivalent phosphole and phosphine oxide showed that the fused tetracyclic moieties are planar. The benzophosphole-fused indoles, such as phosphine oxide, phospholium salt
Styles APA, Harvard, Vancouver, ISO, etc.
43

Breit, Nora C., Carsten Eisenhut, and Shigeyoshi Inoue. "Phosphinosilylenes as a novel ligand system for heterobimetallic complexes." Chemical Communications 52, no. 32 (2016): 5523–26. http://dx.doi.org/10.1039/c6cc00601a.

Texte intégral
Résumé :
The first heterobimetallic complexes comprising interconnected silylene and phosphine donors are reported. In a stepwise fashion, first the silylene coordinates to iron and subsequently the phosphine coordinates to tungsten. Another heterobimetallic complex can be obtained by the insertion of platinum into the P–H bond.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Pruchnik, Florian, Brian R. James, and Pál Kvintovics. "Dimeric rhodium(II) complexes containing bridging mandelate ligands." Canadian Journal of Chemistry 64, no. 5 (1986): 936–39. http://dx.doi.org/10.1139/v86-155.

Texte intégral
Résumé :
The syntheses and characterization of some dimeric rhodium(II) complexes containing bridging mandelato ligands and a metal–metal bond are described. The compounds isolated are Rh2(O2CR)4(H2O)2, previously described by Shchelokov and coworkers, and derivatives of the type Rh2(O2CR)2(N—N)2X2•nH2O (R = (R)—CH(OH)Ph, N—N = o-phenanthroline or 2,2′-dipyridyl, X = Cl, Br, I, and n is 4, 2, or 1). A mixture of species containing both bridged acetate and mandelate was isolated also. Infrared and electronic spectral data are reported. The chloride ligands of the dimers are displaced readily by alcohols
Styles APA, Harvard, Vancouver, ISO, etc.
45

Suárez-Meneses, J. V., A. Oukhrib, M. Gouygou та ін. "[N,P]-pyrrole PdCl2complexes catalyzed the formation of dibenzo-α-pyrone and lactam analogues". Dalton Transactions 45, № 23 (2016): 9621–30. http://dx.doi.org/10.1039/c6dt01022a.

Texte intégral
Résumé :
Catalytic applications on direct intramolecular arylation was developed using a new family of palladium complexes that includes [N,P] ligands based on the pyrrole ring with α-phosphine and phosphole units.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Gibbons, Sarah K., Christopher R. D. Valleau, Jesse L. Peltier, et al. "Diastereoselective Coordination of P-Stereogenic Secondary Phosphines in Copper(I) Chiral Bis(phosphine) Complexes: Structure, Dynamics, and Generation of Phosphido Complexes." Inorganic Chemistry 58, no. 13 (2019): 8854–65. http://dx.doi.org/10.1021/acs.inorgchem.9b01263.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Liang, Lan-Chang, Yu-Ning Chang, Han-Sheng Chen, and Hon Man Lee. "Biphenolate Phosphine Complexes of Tin(IV)." Inorganic Chemistry 46, no. 18 (2007): 7587–93. http://dx.doi.org/10.1021/ic701006r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Starker, Knut, and M. David Curtis. "Molybdenum(IV) cyclopentadienyl phosphine halide complexes." Inorganic Chemistry 24, no. 19 (1985): 3006–10. http://dx.doi.org/10.1021/ic00213a027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Shapley, Patricia A., Robert M. Marshman, Jeanine M. Shusta, Zewdu Gebeyehu, and Scott R. Wilson. "Synthesis of Nitridoosmium(VI) Phosphine Complexes." Inorganic Chemistry 33, no. 3 (1994): 498–502. http://dx.doi.org/10.1021/ic00081a017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Boaz, Neil W., James A. Ponasik, and Shannon E. Large. "Ruthenium complexes of phosphine–aminophosphine ligands." Tetrahedron Letters 47, no. 24 (2006): 4033–35. http://dx.doi.org/10.1016/j.tetlet.2006.04.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!