Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Condensation de Bose-Einstein.

Articles de revues sur le sujet « Condensation de Bose-Einstein »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Condensation de Bose-Einstein ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Griffin, Allan, David W. Snoke, Sandro Stringari, and Thomas Greytak. "Bose–Einstein Condensation." Physics Today 48, no. 10 (1995): 63. http://dx.doi.org/10.1063/1.2808208.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Townsend, Christopher, Wolfgang Ketterle, and Sandro Stringari. "Bose-Einstein condensation." Physics World 10, no. 3 (1997): 29–36. http://dx.doi.org/10.1088/2058-7058/10/3/21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Doyle, J. "Bose-Einstein condensation." Proceedings of the National Academy of Sciences 94, no. 7 (1997): 2774–75. http://dx.doi.org/10.1073/pnas.94.7.2774.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Silvera, Isaac F. "Bose–Einstein condensation." American Journal of Physics 65, no. 6 (1997): 570–74. http://dx.doi.org/10.1119/1.18591.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jaksch, D. "Bose-Einstein Condensation." Journal of Physics A: Mathematical and General 36, no. 37 (2003): 9797. http://dx.doi.org/10.1088/0305-4470/36/37/701.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nityananda, R. "Bose-Einstein condensation." Resonance 5, no. 4 (2000): 46–51. http://dx.doi.org/10.1007/bf02837905.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Nityananda, R. "Bose-Einstein condensation." Resonance 10, no. 12 (2005): 142–47. http://dx.doi.org/10.1007/bf02835137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

ERTİK, HÜSEYİN, HÜSEYİN ŞİRİN, DOǦAN DEMİRHAN, and FEVZİ BÜYÜKKİLİÇ. "FRACTIONAL MATHEMATICAL INVESTIGATION OF BOSE–EINSTEIN CONDENSATION IN DILUTE 87Rb, 23Na AND 7Li ATOMIC GASES." International Journal of Modern Physics B 26, no. 17 (2012): 1250096. http://dx.doi.org/10.1142/s0217979212500968.

Texte intégral
Résumé :
Although atomic Bose gases are experimentally investigated in the dilute regime, interparticle interactions play an important role on the transition temperatures of Bose–Einstein condensation. In this study, Bose–Einstein condensation is handled using fractional calculus for a Bose gas consisting of interacting bosons which are trapped in a three-dimensional harmonic oscillator. In this frame, in order to introduce the nonextensive effect, fractionally generalized Bose–Einstein distribution function which features Mittag–Leffler function is adopted. The dependence of the transition temperature
Styles APA, Harvard, Vancouver, ISO, etc.
9

Burnett, K., M. Edwards, and C. W. Clark. "Bose-Einstein condensation - Preface." Journal of Research of the National Institute of Standards and Technology 101, no. 4 (1996): iii. http://dx.doi.org/10.6028/jres.101.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ferrari, Loris. "Approaching Bose–Einstein condensation." European Journal of Physics 32, no. 6 (2011): 1547–57. http://dx.doi.org/10.1088/0143-0807/32/6/009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Scharf, G. "On Bose–Einstein condensation." American Journal of Physics 61, no. 9 (1993): 843–45. http://dx.doi.org/10.1119/1.17416.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Mullin, William J., and Asaad R. Sakhel. "Generalized Bose–Einstein Condensation." Journal of Low Temperature Physics 166, no. 3-4 (2011): 125–50. http://dx.doi.org/10.1007/s10909-011-0412-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Nityananda, Rajaram. "Bose-Einstein condensation observed." Resonance 1, no. 2 (1996): 111–14. http://dx.doi.org/10.1007/bf02835710.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

TOYODA, Kenji, Yoshiro TAKAHASHI, and Tsutomu YABUZAKI. "Laser Cooling and Bose-Einstein Condensation. Bose-Einstein Condensation in Atomic Gases." Review of Laser Engineering 28, no. 3 (2000): 141–46. http://dx.doi.org/10.2184/lsj.28.141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Tomczyk, Hannah. "Did Einstein predict Bose-Einstein condensation?" Studies in History and Philosophy of Science 93 (June 2022): 30–38. http://dx.doi.org/10.1016/j.shpsa.2022.02.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

MATSUI, TAKU. "BEC OF FREE BOSONS ON NETWORKS." Infinite Dimensional Analysis, Quantum Probability and Related Topics 09, no. 01 (2006): 1–26. http://dx.doi.org/10.1142/s0219025706002202.

Texte intégral
Résumé :
We consider free bosons hopping on a network (infinite graph). The condition for Bose–Einstein condensation is given in terms of the random walk on a graph. In case of periodic lattices, we also consider boson moving in an external periodic potential and obatin the criterion for Bose–Einstein condensation.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Ieda, Jun'ichi, Takeya Tsurumi, and Miki Wadati. "Bose–Einstein Condensation of Ideal Bose Gases." Journal of the Physical Society of Japan 70, no. 5 (2001): 1256–59. http://dx.doi.org/10.1143/jpsj.70.1256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Okorokov, V. A. "BOSE–EINSTEIN CONDENSATION AND MUON PRODUCTION IN ULTRA-HIGH ENERGY COSMIC RAY PARTICLE COLLISIONS." Âdernaâ fizika 87, no. 3 (2024): 170–81. https://doi.org/10.31857/s0044002724030066.

Texte intégral
Résumé :
Collisions of cosmic ray particles with ultra-high initial energies with nuclei in the atmosphere open a wide room for appearing of the novel dynamical features for multiparticle production processes. In particular, the laser-like behavior of pions driven by Bose–Einstein condensation would result in the shift to larger multiplicities and, as consequence, could provide, in general, the enhanced yield of cosmic muons. In the present work the critical value of the space charged particle density for onset of Bose–Einstein condensation of the boson (pion) wave-packets into the same wave-packet sta
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lemm, Marius, and Oliver Siebert. "Bose–Einstein condensation on hyperbolic spaces." Journal of Mathematical Physics 63, no. 8 (2022): 081903. http://dx.doi.org/10.1063/5.0088383.

Texte intégral
Résumé :
A well-known conjecture in mathematical physics asserts that the interacting Bose gas exhibits Bose–Einstein condensation (BEC) in the thermodynamic limit. We consider the Bose gas on certain hyperbolic spaces. In this setting, one obtains a short proof of BEC in the infinite-volume limit from the existence of a volume-independent spectral gap of the Laplacian.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Sekh, Golam Ali, and Benoy Talukdar. "Satyendra Nath Bose: quantum statistics to Bose-Einstein condensation." Moldavian Journal of the Physical Sciences 22, no. 1 (2023): 11–42. http://dx.doi.org/10.53081/mjps.2023.22-1.01.

Texte intégral
Résumé :
Satyendra Nath (S.N.) Bose is one of the great Indian scientists. His remarkable work on the black body radiation or derivation of Planck’s law led to quantum statistics, in particular, the statistics of photon. Albert Einstein applied Bose’s idea to a gas made of atoms and predicted a new state of matter now called Bose-Einstein condensate. It took 70 years to observe the predicted condensation phenomenon in the laboratory. With a brief introduction to the formative period of Professor Bose, this research survey begins with the founding works on quantum statistics and, subsequently, provides
Styles APA, Harvard, Vancouver, ISO, etc.
21

Manna, Premabrata, and Satadal Bhattacharyya. "Thermodynamics of Bose—Einstein Condensation." Resonance 27, no. 9 (2022): 1579–96. http://dx.doi.org/10.1007/s12045-022-1450-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Harrison, N., S. E. Sebastian, C. D. Batista, et al. "Bose-Einstein condensation in BaCuSi2O6." Journal of Physics: Conference Series 51 (November 1, 2006): 9–14. http://dx.doi.org/10.1088/1742-6596/51/1/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Begun, Viktor. "High temperature Bose-Einstein condensation." EPJ Web of Conferences 126 (2016): 03002. http://dx.doi.org/10.1051/epjconf/201612603002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Deng, Hui, Hartmut Haug, and Yoshihisa Yamamoto. "Exciton-polariton Bose-Einstein condensation." Reviews of Modern Physics 82, no. 2 (2010): 1489–537. http://dx.doi.org/10.1103/revmodphys.82.1489.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

van Zoest, T., N. Gaaloul, Y. Singh, et al. "Bose-Einstein Condensation in Microgravity." Science 328, no. 5985 (2010): 1540–43. http://dx.doi.org/10.1126/science.1189164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Jochim, S. "Bose-Einstein Condensation of Molecules." Science 302, no. 5653 (2003): 2101–3. http://dx.doi.org/10.1126/science.1093280.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Tang, Yijun, Nathaniel Q. Burdick, Kristian Baumann, and Benjamin L. Lev. "Bose–Einstein condensation of162Dy and160Dy." New Journal of Physics 17, no. 4 (2015): 045006. http://dx.doi.org/10.1088/1367-2630/17/4/045006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Weber, T. "Bose-Einstein Condensation of Cesium." Science 299, no. 5604 (2002): 232–35. http://dx.doi.org/10.1126/science.1079699.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Yukalov, V. I. "Basics of Bose-Einstein condensation." Physics of Particles and Nuclei 42, no. 3 (2011): 460–513. http://dx.doi.org/10.1134/s1063779611030063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Michoel, T., and A. Verbeure. "Nonextensive Bose–Einstein condensation model." Journal of Mathematical Physics 40, no. 3 (1999): 1268–79. http://dx.doi.org/10.1063/1.532800.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Salas, P., M. Fortes, M. de Llano, F. J. Sevilla, and M. A. Solís. "Bose-Einstein Condensation in Multilayers." Journal of Low Temperature Physics 159, no. 5-6 (2010): 540–48. http://dx.doi.org/10.1007/s10909-010-0166-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Sackett, C. A., C. C. Bradley, M. Welling, and R. G. Hulet. "Bose-Einstein condensation of lithium." Applied Physics B: Lasers and Optics 65, no. 4-5 (1997): 433–40. http://dx.doi.org/10.1007/s003400050293.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Tino, G. M., and M. Inguscio. "Experiments on Bose-Einstein condensation." La Rivista del Nuovo Cimento 22, no. 4 (1999): 1–43. http://dx.doi.org/10.1007/bf02874384.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Stoof, H. T. C. "Nucleation of Bose-Einstein condensation." Physical Review A 45, no. 12 (1992): 8398–406. http://dx.doi.org/10.1103/physreva.45.8398.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wang, Boyuan. "Review on Bose-Einstein Condensation." Highlights in Science, Engineering and Technology 38 (March 16, 2023): 19–29. http://dx.doi.org/10.54097/hset.v38i.5689.

Texte intégral
Résumé :
With the prevalence of quantum theory, many physicists have focused on the Bose-Einstein condensation (BEC) because it reveals the quantum behavior macroscopically. This article discusses briefly the discovery of BEC and the difficulties to achieve BEC. After that, the general procedures to achieve BEC are introduced while the mechanism of important techniques to accomplish each procedure is illustrated, such as laser cooling, trapping, and evaporative cooling. Besides, the unique physical properties of BEC are introduced in this article. Finally, the possible application of BEC in the field o
Styles APA, Harvard, Vancouver, ISO, etc.
36

Liu, Yong. "The Bose-Einstein condensation of anyons." Australian Journal of Physics 53, no. 3 (2000): 447. http://dx.doi.org/10.1071/ph99062.

Texte intégral
Résumé :
The probability for the Bose-Einstein condensation of anyons is discussed. It is found that the ideal anyon gas near Bose statistics can display BEC behaviour. In addition, the transition point and the specific heat are determined.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Snoke, D. W. "Coherence and Optical Emission from Bilayer Exciton Condensates." Advances in Condensed Matter Physics 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/938609.

Texte intégral
Résumé :
Experiments aimed at demonstrating Bose-Einstein condensation of excitons in two types of experiments with bilayer structures (coupled quantum wells) are reviewed, with an emphasis on the basic effects. Bose-Einstein condensation implies the existence of a macroscopic coherence, also known as off-diagonal long-range order, and proposed tests and past claims for coherence in these excitonic systems are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Khalilov, V. R., Choon-Lin Ho, and Chi Yang. "Condensation and Magnetization of Charged Vector Boson Gas." Modern Physics Letters A 12, no. 27 (1997): 1973–81. http://dx.doi.org/10.1142/s0217732397002028.

Texte intégral
Résumé :
The magnetic properties of charged vector boson gas are studied in the very weak, and very strong (near critical value) external magnetic field limits. When the density of the vector boson gas is low, or when the external field is strong, no true Bose–Einstein condensation occurs, though significant amount of bosons will accumulate in the ground state. The gas is ferromagnetic in nature at low temperature. However, Bose–Einstein condensation of vector bosons (scalar bosons as well) is likely to occur in the presence of a uniform weak magnetic field when the gas density is sufficiently high. A
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wieman, Carl E. "Bose–Einstein Condensation in an Ultracold Gas." International Journal of Modern Physics B 11, no. 28 (1997): 3281–96. http://dx.doi.org/10.1142/s0217979297001581.

Texte intégral
Résumé :
Bose–Einstein condensation in a gas has now been achieved. Atoms are cooled to the point of condensation using laser cooling and trapping, followed by magnetic trapping and evaporative cooling. These techniques are explained, as well as the techniques by which we observe the cold atom samples. Three different signatures of Bose–Einstein condensation are described. A number of properties of the condensate, including collective excitations, distortions of the wave function by interactions, and the fraction of atoms in the condensate versus temperature, have also been measured.
Styles APA, Harvard, Vancouver, ISO, etc.
40

TORII, Yoshio. "Laser Cooling and Bose-Einstein Condensation. Experimental Techniques for Bose-Einstein Condensation of Rubidium Atoms." Review of Laser Engineering 28, no. 3 (2000): 147–53. http://dx.doi.org/10.2184/lsj.28.147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Crease, Robert P., and Gino Elia. "When Bose wrote to Einstein." Physics World 37, no. 4 (2024): 28–31. http://dx.doi.org/10.1088/2058-7058/37/04/23.

Texte intégral
Résumé :
In 1924 an Indian physicist called Satyendra Nath Bose wrote to Albert Einstein saying he had solved a problem in quantum physics that had stumped the great man. One century on, Robert P Crease and Gino Elia explain how the correspondence led to the notion of Bose–Einstein condensation and why it revealed the power of diverse thinking.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Phat, Tran Huu, Le Viet Hoa, and Dang Thi Minh Hue. "Phase Structure of Bose - Einstein Condensate in Ultra - Cold Bose Gases." Communications in Physics 24, no. 4 (2015): 343. http://dx.doi.org/10.15625/0868-3166/24/4/5041.

Texte intégral
Résumé :
The Bose - Einstein condensation of ultra - cold Bose gases is studied by means of the Cornwall - Jackiw - Tomboulis effective potential approach in the improved double - bubble approximation which preserves the Goldstone theorem. The phase structure of Bose - Einstein condensate associating with two different types of phase transition is systematically investigated. Its main feature is that the symmetry which was broken at zero temperature gets restore at higher temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
43

HOMORODEAN, LAUREAN. "MAGNETIC SUSCEPTIBILITY OF THE NONRELATIVISTIC BOSON GAS." Modern Physics Letters B 14, no. 17n18 (2000): 645–51. http://dx.doi.org/10.1142/s0217984900000823.

Texte intégral
Résumé :
The magnetic susceptibilities of the degenerate (below the Bose–Einstein condensation temperature) and nondegenerate ideal gases of nonrelativistic charged spinless bosons are presented. In both cases, the boson gas is diamagnetic. The magnetic susceptibility of the degenerate boson gas below the Bose–Einstein condensation temperature increases in modulus as the temperature increases. As expected, the magnetic susceptibility of the nondegenerate boson gas decreases in modulus with increasing temperature according to the Curie law in low magnetic fields.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Yukalov, Vyacheslav I. "Particle Fluctuations in Mesoscopic Bose Systems." Symmetry 11, no. 5 (2019): 603. http://dx.doi.org/10.3390/sym11050603.

Texte intégral
Résumé :
Particle fluctuations in mesoscopic Bose systems of arbitrary spatial dimensionality are considered. Both ideal Bose gases and interacting Bose systems are studied in the regions above the Bose–Einstein condensation temperature T c , as well as below this temperature. The strength of particle fluctuations defines whether the system is stable or not. Stability conditions depend on the spatial dimensionality d and on the confining dimension D of the system. The consideration shows that mesoscopic systems, experiencing Bose–Einstein condensation, are stable when: (i) ideal Bose gas is confined in
Styles APA, Harvard, Vancouver, ISO, etc.
45

SCHELLE, ALEXEJ. "QUANTUM FLUCTUATION DYNAMICS DURING THE TRANSITION OF A MESOSCOPIC BOSONIC GAS INTO A BOSE–EINSTEIN CONDENSATE." Fluctuation and Noise Letters 11, no. 04 (2012): 1250027. http://dx.doi.org/10.1142/s0219477512500277.

Texte intégral
Résumé :
The condensate number distribution during the transition of a dilute, weakly interacting gas of N = 200 bosonic atoms into a Bose–Einstein condensate is modeled within number conserving master equation theory of Bose–Einstein condensation. Initial strong quantum fluctuations occuring during the exponential cycle of condensate growth reduce in a subsequent saturation stage, before the Bose gas finally relaxes towards the Gibbs–Boltzmann equilibrium.
Styles APA, Harvard, Vancouver, ISO, etc.
46

FIDALEO, FRANCESCO. "HARMONIC ANALYSIS ON CAYLEY TREES II: THE BOSE–EINSTEIN CONDENSATION." Infinite Dimensional Analysis, Quantum Probability and Related Topics 15, no. 04 (2012): 1250024. http://dx.doi.org/10.1142/s0219025712500245.

Texte intégral
Résumé :
We investigate the Bose–Einstein Condensation on non-homogeneous non-amenable networks for the model describing arrays of Josephson junctions. The graphs under investigation are obtained by adding density zero perturbations to the homogeneous Cayley Trees. The resulting topological model, whose Hamiltonian is the pure hopping one given by the opposite of the adjacency operator, has also a mathematical interest in itself. The present paper is then the application to the Bose–Einstein Condensation phenomena, of the harmonic analysis aspects, previously investigated in a separate work, for such n
Styles APA, Harvard, Vancouver, ISO, etc.
47

WANG, YING, and XIANG-MU KONG. "BOSE–EINSTEIN CONDENSATION OF A q-DEFORMED BOSE GAS IN A RANDOM BOX." Modern Physics Letters B 24, no. 02 (2010): 135–41. http://dx.doi.org/10.1142/s0217984910022299.

Texte intégral
Résumé :
The q-deformed Bose–Einstein distribution is used to study the Bose–Einstein condensation (BEC) of a q-deformed Bose gas in random box. It is shown that the BEC transition temperature is lowered due to random boundary conditions. The effects of q-deformation on the properties of the system are also discussed. We find some properties of a q-deformed Bose gas, which are different from those of an ordinary Bose gas. Similar results are also shown for q-bosons confined in a harmonic oscillator potential well.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Bunkov, Yu M., V. I. Belotelov, P. M. Vetoshko, G. A. Knyazev, A. N. Kuzmichev, and P. E. Petrov. "Magnon Supercurrent and the Phase Slippage in an Yttrium Iron Garnet Film." JETP Letters 120, no. 6 (2024): 421–27. http://dx.doi.org/10.1134/s0021364024603117.

Texte intégral
Résumé :
Exactly forty years ago, the spin superfluidity and Bose–Einstein condensation of magnons in superfluid antiferromagnetic 3He-B were discovered. In this work, the existence of spin superfluidity and phase slippage in an yttrium iron garnet film at room temperature is demonstrated using the optical Faraday effect. The s-patial distribution of the phase and amplitude of the spin precession under the conditions of magnon Bose‒Einstein condensation are studied by varying the pump phase difference between two strip lines exciting magnons.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Bordag, M. "On Bose-Einstein condensation in one-dimensional lattices of delta functions." Modern Physics Letters A 35, no. 03 (2020): 2040005. http://dx.doi.org/10.1142/s0217732320400052.

Texte intégral
Résumé :
We investigate Bose-Einstein condensation of a gas of non-interacting Bose particles moving in the background of a periodic lattice of delta functions. In the one-dimensional case, where one has no condensation in the free case, we showed that this property persist also in the presence of the lattice. In addition we formulated some conditions on the spectral functions which would allow for condensation.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Gagatsos, C. N., A. I. Karanikas, and G. Kordas. "Mutual Information and Bose-Einstein Condensation." Open Systems & Information Dynamics 20, no. 02 (2013): 1350008. http://dx.doi.org/10.1142/s123016121350008x.

Texte intégral
Résumé :
In this work we study an ideal bosonic quantum field system at finite temperature, and in a canonical and a grand canonical ensemble. For a simple spatial partition we derive the corresponding mutual information, a quantity that measures the total amount of information of one of the parts about the other. In order to find it, we first derive the von Neumann entropy that corresponds to the spatially separated subsystem (i.e. the geometric entropy) and then we subtract its extensive part which coincides with the thermal entropy of the subsystem. In the framework of the grand canonical descriptio
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!