Littérature scientifique sur le sujet « Continuous Time Bayesian Networks »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Continuous Time Bayesian Networks ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Continuous Time Bayesian Networks"
Bhattacharjya, Debarun, Karthikeyan Shanmugam, Tian Gao, Nicholas Mattei, Kush Varshney, and Dharmashankar Subramanian. "Event-Driven Continuous Time Bayesian Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 3259–66. http://dx.doi.org/10.1609/aaai.v34i04.5725.
Texte intégralXu, J., and C. R. Shelton. "Intrusion Detection using Continuous Time Bayesian Networks." Journal of Artificial Intelligence Research 39 (December 23, 2010): 745–74. http://dx.doi.org/10.1613/jair.3050.
Texte intégralPerreault, Logan, Monica Thornton, John Sheppard, and Joseph DeBruycker. "Disjunctive interaction in continuous time Bayesian networks." International Journal of Approximate Reasoning 90 (November 2017): 253–71. http://dx.doi.org/10.1016/j.ijar.2017.07.011.
Texte intégralPerreault, Logan, and John Sheppard. "Compact structures for continuous time Bayesian networks." International Journal of Approximate Reasoning 109 (June 2019): 19–41. http://dx.doi.org/10.1016/j.ijar.2019.03.005.
Texte intégralVilla, Simone, and Fabio Stella. "Learning Continuous Time Bayesian Networks in Non-stationary Domains." Journal of Artificial Intelligence Research 57 (September 20, 2016): 1–37. http://dx.doi.org/10.1613/jair.5126.
Texte intégralStella, F., and Y. Amer. "Continuous time Bayesian network classifiers." Journal of Biomedical Informatics 45, no. 6 (2012): 1108–19. http://dx.doi.org/10.1016/j.jbi.2012.07.002.
Texte intégralShelton, C. R., and G. Ciardo. "Tutorial on Structured Continuous-Time Markov Processes." Journal of Artificial Intelligence Research 51 (December 23, 2014): 725–78. http://dx.doi.org/10.1613/jair.4415.
Texte intégralLinzner, Dominik, and Heinz Koeppl. "Active learning of continuous-time Bayesian networks through interventions*." Journal of Statistical Mechanics: Theory and Experiment 2021, no. 12 (2021): 124001. http://dx.doi.org/10.1088/1742-5468/ac3908.
Texte intégralSturlaugson, Liessman, and John W. Sheppard. "Uncertain and negative evidence in continuous time Bayesian networks." International Journal of Approximate Reasoning 70 (March 2016): 99–122. http://dx.doi.org/10.1016/j.ijar.2015.12.013.
Texte intégralHosoda, Shion, Tsukasa Fukunaga, and Michiaki Hamada. "Umibato: estimation of time-varying microbial interaction using continuous-time regression hidden Markov model." Bioinformatics 37, Supplement_1 (2021): i16—i24. http://dx.doi.org/10.1093/bioinformatics/btab287.
Texte intégralThèses sur le sujet "Continuous Time Bayesian Networks"
Nodelman, Uri D. "Continuous time bayesian networks /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Texte intégralACERBI, ENZO. "Continuos time Bayesian networks for gene networks reconstruction." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/52709.
Texte intégralCODECASA, DANIELE. "Continuous time bayesian network classifiers." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/80691.
Texte intégralVILLA, SIMONE. "Continuous Time Bayesian Networks for Reasoning and Decision Making in Finance." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/69953.
Texte intégralFan, Yu. "Continuous time Bayesian Network approximate inference and social network applications." Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957308751&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268330625&clientId=48051.
Texte intégralGATTI, ELENA. "Graphical models for continuous time inference and decision making." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19575.
Texte intégralAlharbi, Randa. "Bayesian inference for continuous time Markov chains." Thesis, University of Glasgow, 2019. http://theses.gla.ac.uk/40972/.
Texte intégralParton, Alison. "Bayesian inference for continuous-time step-and-turn movement models." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/20124/.
Texte intégralTucker, Allan Brice James. "The automatic explanation of Multivariate Time Series with large time lags." Thesis, Birkbeck (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246924.
Texte intégralCRISTINI, ALESSANDRO. "Continuous-time spiking neural networks: paradigm and case studies." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2014. http://hdl.handle.net/2108/202297.
Texte intégralLivres sur le sujet "Continuous Time Bayesian Networks"
C, Merrill Walter, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Neuromorphic learning of continuous-valued mappings from noise-corrupted data: Application to real-time adaptive control. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Trouver le texte intégralButz, Martin V., and Esther F. Kutter. Top-Down Predictions Determine Perceptions. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.003.0009.
Texte intégralXu, Yunfei, Sarat Dass, Tapabrata Maiti, and Jongeun Choi. Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks: Online Environmental Field Reconstruction in Space and Time. Springer London, Limited, 2015.
Trouver le texte intégralXu, Yunfei, Choi Jongeun, Sarat Dass, and Tapabrata Maiti. Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks: Online Environmental Field Reconstruction in Space and Time. Springer International Publishing AG, 2015.
Trouver le texte intégralChu, Yiren. A digitally programmable adaptive high-frequency CMOS continuous-time filter. 1994.
Trouver le texte intégralNeuromorphic learning of continuous-valued mappings from noise-corrupted data: Application to real-time adaptive control. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Trouver le texte intégralRamsay, James. Curve registration. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.9.
Texte intégralTrappenberg, Thomas P. Fundamentals of Machine Learning. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828044.001.0001.
Texte intégralCoolen, A. C. C., A. Annibale, and E. S. Roberts. Graphs on structured spaces. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198709893.003.0010.
Texte intégralStewart, Edmund. Conclusion. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198747260.003.0008.
Texte intégralChapitres de livres sur le sujet "Continuous Time Bayesian Networks"
Liu, Manxia, Fabio Stella, Arjen Hommersom, and Peter J. F. Lucas. "Representing Hypoexponential Distributions in Continuous Time Bayesian Networks." In Communications in Computer and Information Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91479-4_47.
Texte intégralvan der Heijden, Maarten, and Arjen Hommersom. "Causal Independence Models for Continuous Time Bayesian Networks." In Probabilistic Graphical Models. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11433-0_33.
Texte intégralCerotti, Davide, and Daniele Codetta-Raiteri. "Mean Field Analysis for Continuous Time Bayesian Networks." In Communications in Computer and Information Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91632-3_12.
Texte intégralAcerbi, Enzo, and Fabio Stella. "Continuous Time Bayesian Networks for Gene Network Reconstruction: A Comparative Study on Time Course Data." In Bioinformatics Research and Applications. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08171-7_16.
Texte intégralShi, Dongyu, and Jinyuan You. "Update Rules for Parameter Estimation in Continuous Time Bayesian Network." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36668-3_17.
Texte intégralCodecasa, Daniele, and Fabio Stella. "A Classification Based Scoring Function for Continuous Time Bayesian Network Classifiers." In New Frontiers in Mining Complex Patterns. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08407-7_3.
Texte intégralWang, Jing, Jinglin Zhou, and Xiaolu Chen. "Probabilistic Graphical Model for Continuous Variables." In Intelligent Control and Learning Systems. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8044-1_14.
Texte intégralScutari, Marco, and Jean-Baptiste Denis. "The Continuous Case: Gaussian Bayesian Networks." In Bayesian Networks, 2nd ed. Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9780429347436-2.
Texte intégralScutari, Marco, and Jean-Baptiste Denis. "Time Series: Dynamic Bayesian Networks." In Bayesian Networks, 2nd ed. Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9780429347436-4.
Texte intégralLiu, Manxia, Arjen Hommersom, Maarten van der Heijden, and Peter J. F. Lucas. "Hybrid Time Bayesian Networks." In Lecture Notes in Computer Science. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20807-7_34.
Texte intégralActes de conférences sur le sujet "Continuous Time Bayesian Networks"
Villa, Simone, and Fabio Stella. "Learning Continuous Time Bayesian Networks in Non-stationary Domains." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/804.
Texte intégralGrößl, Martin. "Modeling dependable systems with continuous time Bayesian networks." In SAC 2015: Symposium on Applied Computing. ACM, 2015. http://dx.doi.org/10.1145/2695664.2695729.
Texte intégralSchupbach, Jordan, Elliott Pryor, Kyle Webster, and John Sheppard. "Combining Dynamic Bayesian Networks and Continuous Time Bayesian Networks for Diagnostic and Prognostic Modeling." In 2022 IEEE AUTOTESTCON. IEEE, 2022. http://dx.doi.org/10.1109/autotestcon47462.2022.9984758.
Texte intégralPerreault, Logan, Monica Thornton, Shane Strasser, and John W. Sheppard. "Deriving prognostic continuous time Bayesian networks from D-matrices." In 2015 IEEE AUTOTESTCON. IEEE, 2015. http://dx.doi.org/10.1109/autest.2015.7356482.
Texte intégralPoropudas, Jirka, and Kai Virtanen. "Simulation metamodeling in continuous time using dynamic Bayesian networks." In 2010 Winter Simulation Conference - (WSC 2010). IEEE, 2010. http://dx.doi.org/10.1109/wsc.2010.5679098.
Texte intégralPerreault, Logan, John Sheppard, Houston King, and Liessman Sturlaugson. "Using continuous-time Bayesian networks for standards-based diagnostics and prognostics." In 2014 IEEE AUTOTEST. IEEE, 2014. http://dx.doi.org/10.1109/autest.2014.6935145.
Texte intégralCodetta Raiteri, Daniele, and Luigi Portinale. "A GSPN based tool to inference Generalized Continuous Time Bayesian Networks." In 7th International Conference on Performance Evaluation Methodologies and Tools. ICST, 2014. http://dx.doi.org/10.4108/icst.valuetools.2013.254400.
Texte intégralCodetta-Raiteri, Daniele, and Luigi Portinale. "Modeling and analysis of dependable systems through Generalized Continuous Time Bayesian Networks." In 2015 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2015. http://dx.doi.org/10.1109/rams.2015.7105131.
Texte intégralPerreault, Logan, Monica Thornton, and John W. Sheppard. "Valuation and optimization for performance based logistics using continuous time Bayesian networks." In 2016 IEEE AUTOTESTCON. IEEE, 2016. http://dx.doi.org/10.1109/autest.2016.7589568.
Texte intégralPerreault, Logan J., Monica Thornton, Rollie Goodman, and John W. Sheppard. "A Swarm-Based Approach to Learning Phase-Type Distributions for Continuous Time Bayesian Networks." In 2015 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2015. http://dx.doi.org/10.1109/ssci.2015.259.
Texte intégralRapports d'organisations sur le sujet "Continuous Time Bayesian Networks"
Roberson, Madeleine, Kathleen Inman, Ashley Carey, Isaac Howard, and Jameson Shannon. Probabilistic neural networks that predict compressive strength of high strength concrete in mass placements using thermal history. Engineer Research and Development Center (U.S.), 2022. http://dx.doi.org/10.21079/11681/44483.
Texte intégral