Articles de revues sur le sujet « Continuous Time Bayesian Networks »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Continuous Time Bayesian Networks ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Bhattacharjya, Debarun, Karthikeyan Shanmugam, Tian Gao, Nicholas Mattei, Kush Varshney, and Dharmashankar Subramanian. "Event-Driven Continuous Time Bayesian Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 3259–66. http://dx.doi.org/10.1609/aaai.v34i04.5725.
Texte intégralVilla, Simone, and Fabio Stella. "Learning Continuous Time Bayesian Networks in Non-stationary Domains." Journal of Artificial Intelligence Research 57 (September 20, 2016): 1–37. http://dx.doi.org/10.1613/jair.5126.
Texte intégralXu, J., and C. R. Shelton. "Intrusion Detection using Continuous Time Bayesian Networks." Journal of Artificial Intelligence Research 39 (December 23, 2010): 745–74. http://dx.doi.org/10.1613/jair.3050.
Texte intégralPerreault, Logan, Monica Thornton, John Sheppard, and Joseph DeBruycker. "Disjunctive interaction in continuous time Bayesian networks." International Journal of Approximate Reasoning 90 (November 2017): 253–71. http://dx.doi.org/10.1016/j.ijar.2017.07.011.
Texte intégralPerreault, Logan, and John Sheppard. "Compact structures for continuous time Bayesian networks." International Journal of Approximate Reasoning 109 (June 2019): 19–41. http://dx.doi.org/10.1016/j.ijar.2019.03.005.
Texte intégralStella, F., and Y. Amer. "Continuous time Bayesian network classifiers." Journal of Biomedical Informatics 45, no. 6 (2012): 1108–19. http://dx.doi.org/10.1016/j.jbi.2012.07.002.
Texte intégralLinzner, Dominik, and Heinz Koeppl. "Active learning of continuous-time Bayesian networks through interventions*." Journal of Statistical Mechanics: Theory and Experiment 2021, no. 12 (2021): 124001. http://dx.doi.org/10.1088/1742-5468/ac3908.
Texte intégralSturlaugson, Liessman, and John W. Sheppard. "Uncertain and negative evidence in continuous time Bayesian networks." International Journal of Approximate Reasoning 70 (March 2016): 99–122. http://dx.doi.org/10.1016/j.ijar.2015.12.013.
Texte intégralHosoda, Shion, Tsukasa Fukunaga, and Michiaki Hamada. "Umibato: estimation of time-varying microbial interaction using continuous-time regression hidden Markov model." Bioinformatics 37, Supplement_1 (2021): i16—i24. http://dx.doi.org/10.1093/bioinformatics/btab287.
Texte intégralPark, Cheol Young, Kathryn Blackmond Laskey, Paulo C. G. Costa, and Shou Matsumoto. "Gaussian Mixture Reduction for Time-Constrained Approximate Inference in Hybrid Bayesian Networks." Applied Sciences 9, no. 10 (2019): 2055. http://dx.doi.org/10.3390/app9102055.
Texte intégralCodecasa, Daniele, and Fabio Stella. "Learning continuous time Bayesian network classifiers." International Journal of Approximate Reasoning 55, no. 8 (2014): 1728–46. http://dx.doi.org/10.1016/j.ijar.2014.05.005.
Texte intégralShelton, C. R., and G. Ciardo. "Tutorial on Structured Continuous-Time Markov Processes." Journal of Artificial Intelligence Research 51 (December 23, 2014): 725–78. http://dx.doi.org/10.1613/jair.4415.
Texte intégralSchupbach, Jordan, Elliott Pryor, Kyle Webster, and John Sheppard. "A Risk-Based Approach to Prognostics and Health Management Combining Bayesian Networks and Continuous-Time Bayesian Networks." IEEE Instrumentation & Measurement Magazine 26, no. 5 (2023): 3–11. http://dx.doi.org/10.1109/mim.2023.10208251.
Texte intégralSturlaugson, Liessman, Logan Perreault, and John W. Sheppard. "Factored performance functions and decision making in continuous time Bayesian networks." Journal of Applied Logic 22 (July 2017): 28–45. http://dx.doi.org/10.1016/j.jal.2016.11.030.
Texte intégralCodetta-Raiteri, Daniele. "Applying Generalized Continuous Time Bayesian Networks to a reliability case study." IFAC-PapersOnLine 48, no. 21 (2015): 676–81. http://dx.doi.org/10.1016/j.ifacol.2015.09.605.
Texte intégralCodecasa, Daniele, and Fabio Stella. "Classification and clustering with continuous time Bayesian network models." Journal of Intelligent Information Systems 45, no. 2 (2014): 187–220. http://dx.doi.org/10.1007/s10844-014-0345-0.
Texte intégralWei, Xiaohan, Yulai Zhang, and Cheng Wang. "Bayesian Network Structure Learning Method Based on Causal Direction Graph for Protein Signaling Networks." Entropy 24, no. 10 (2022): 1351. http://dx.doi.org/10.3390/e24101351.
Texte intégralAcerbi, Enzo, Marcela Hortova-Kohoutkova, Tsokyi Choera, et al. "Modeling Approaches Reveal New Regulatory Networks in Aspergillus fumigatus Metabolism." Journal of Fungi 6, no. 3 (2020): 108. http://dx.doi.org/10.3390/jof6030108.
Texte intégralBregoli, Alessandro, Marco Scutari, and Fabio Stella. "A constraint-based algorithm for the structural learning of continuous-time Bayesian networks." International Journal of Approximate Reasoning 138 (November 2021): 105–22. http://dx.doi.org/10.1016/j.ijar.2021.08.005.
Texte intégralLi, Yan-Feng, Jinhua Mi, Yu Liu, Yuan-Jian Yang, and Hong-Zhong Huang. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers." Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 229, no. 6 (2015): 530–41. http://dx.doi.org/10.1177/1748006x15588446.
Texte intégralSturlaugson, Liessman, and John W. Sheppard. "Sensitivity Analysis of Continuous Time Bayesian Network Reliability Models." SIAM/ASA Journal on Uncertainty Quantification 3, no. 1 (2015): 346–69. http://dx.doi.org/10.1137/140953848.
Texte intégralDevni, Prima Sar, Rosadi Dedi, Ronnie Effendie Adhitya, and Danardono. "K-means and bayesian networks to determine building damage levels." TELKOMNIKA Telecommunication, Computing, Electronics and Control 17, no. 2 (2019): 719–27. https://doi.org/10.12928/TELKOMNIKA.v17i2.11756.
Texte intégralCodetta-Raiteri, Daniele, and Luigi Portinale. "Generalized Continuous Time Bayesian Networks as a modelling and analysis formalism for dependable systems." Reliability Engineering & System Safety 167 (November 2017): 639–51. http://dx.doi.org/10.1016/j.ress.2017.04.014.
Texte intégralBeaudry, Eric, Froduald Kabanza, and Francois Michaud. "Planning for Concurrent Action Executions Under Action Duration Uncertainty Using Dynamically Generated Bayesian Networks." Proceedings of the International Conference on Automated Planning and Scheduling 20 (May 25, 2021): 10–17. http://dx.doi.org/10.1609/icaps.v20i1.13400.
Texte intégralBoudali, H., and J. B. Dugan. "A Continuous-Time Bayesian Network Reliability Modeling, and Analysis Framework." IEEE Transactions on Reliability 55, no. 1 (2006): 86–97. http://dx.doi.org/10.1109/tr.2005.859228.
Texte intégralVilla, S., and F. Stella. "A continuous time Bayesian network classifier for intraday FX prediction." Quantitative Finance 14, no. 12 (2014): 2079–92. http://dx.doi.org/10.1080/14697688.2014.906811.
Texte intégralGatti, E., D. Luciani, and F. Stella. "A continuous time Bayesian network model for cardiogenic heart failure." Flexible Services and Manufacturing Journal 24, no. 4 (2011): 496–515. http://dx.doi.org/10.1007/s10696-011-9131-2.
Texte intégralLiu, Manxia, Fabio Stella, Arjen Hommersom, Peter J. F. Lucas, Lonneke Boer, and Erik Bischoff. "A comparison between discrete and continuous time Bayesian networks in learning from clinical time series data with irregularity." Artificial Intelligence in Medicine 95 (April 2019): 104–17. http://dx.doi.org/10.1016/j.artmed.2018.10.002.
Texte intégralWU, CHUNG-HSIEN, JHING-FA WANG, CHAUG-CHING HUANG, and JAU-YIEN LEE. "SPEAKER-INDEPENDENT RECOGNITION OF ISOLATED WORDS USING CONCATENATED NEURAL NETWORKS." International Journal of Pattern Recognition and Artificial Intelligence 05, no. 05 (1991): 693–714. http://dx.doi.org/10.1142/s0218001491000417.
Texte intégralBobrowski, Omer, Ron Meir, and Yonina C. Eldar. "Bayesian Filtering in Spiking Neural Networks: Noise, Adaptation, and Multisensory Integration." Neural Computation 21, no. 5 (2009): 1277–320. http://dx.doi.org/10.1162/neco.2008.01-08-692.
Texte intégralDui, Hongyan, Jiaying Song, and Yun-an Zhang. "Reliability and Service Life Analysis of Airbag Systems." Mathematics 11, no. 2 (2023): 434. http://dx.doi.org/10.3390/math11020434.
Texte intégralda Silva, Rafael Luiz, Boxuan Zhong, Yuhan Chen, and Edgar Lobaton. "Improving Performance and Quantifying Uncertainty of Body-Rocking Detection Using Bayesian Neural Networks." Information 13, no. 7 (2022): 338. http://dx.doi.org/10.3390/info13070338.
Texte intégralWANG, Xiaoming. "Reliability Modeling and Evaluation for Rectifier Feedback System Based on Continuous Time Bayesian Networks Under Fuzzy Numbers." Journal of Mechanical Engineering 51, no. 14 (2015): 167. http://dx.doi.org/10.3901/jme.2015.14.167.
Texte intégralWei, Jiacheng, Tong Chen, Haolin Wen, and Haobang Liu. "Time-Varying Reliability Analysis of Integrated Power System Based on Dynamic Bayesian Network." Systems 13, no. 7 (2025): 541. https://doi.org/10.3390/systems13070541.
Texte intégralSabet, M. Amin, and Behnam Ghavami. "Statistical soft error rate estimation of combinational circuits using Bayesian networks." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 35, no. 5 (2016): 1760–73. http://dx.doi.org/10.1108/compel-09-2015-0317.
Texte intégralMarzen, Sarah E., and James P. Crutchfield. "Inference, Prediction, & Entropy-Rate Estimation of Continuous-Time, Discrete-Event Processes." Entropy 24, no. 11 (2022): 1675. http://dx.doi.org/10.3390/e24111675.
Texte intégralBadr, Ahmed, Ahmed Yosri, Sonia Hassini, and Wael El-Dakhakhni. "Coupled Continuous-Time Markov Chain–Bayesian Network Model for Dam Failure Risk Prediction." Journal of Infrastructure Systems 27, no. 4 (2021): 04021041. http://dx.doi.org/10.1061/(asce)is.1943-555x.0000649.
Texte intégralZia, Muhammad Azam, Zhongbao Zhang, Guangda Li, Haseeb Ahmad, and Sen Su. "Prediction of Rising Venues in Citation Networks." Journal of Advanced Computational Intelligence and Intelligent Informatics 21, no. 4 (2017): 650–58. http://dx.doi.org/10.20965/jaciii.2017.p0650.
Texte intégralMoura, Márcio das Chagas, and Enrique López Droguett. "A continuous-time semi-markov bayesian belief network model for availability measure estimation of fault tolerant systems." Pesquisa Operacional 28, no. 2 (2008): 355–75. http://dx.doi.org/10.1590/s0101-74382008000200011.
Texte intégralChen, Kevin S. "Optimal Population Coding for Dynamic Input by Nonequilibrium Networks." Entropy 24, no. 5 (2022): 598. http://dx.doi.org/10.3390/e24050598.
Texte intégralChen, Kevin S. "Optimal Population Coding for Dynamic Input by Nonequilibrium Networks." Entropy 24, no. 5 (2022): 598. http://dx.doi.org/10.3390/e24050598.
Texte intégralChen, Kevin S. "Optimal Population Coding for Dynamic Input by Nonequilibrium Networks." Entropy 24, no. 5 (2022): 598. http://dx.doi.org/10.3390/e24050598.
Texte intégralAnumasa, Srinivas, and P. K. Srijith. "Latent Time Neural Ordinary Differential Equations." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6010–18. http://dx.doi.org/10.1609/aaai.v36i6.20547.
Texte intégralBOXER, PAUL A. "LEARNING NAIVE PHYSICS BY VISUAL OBSERVATION: USING QUALITATIVE SPATIAL REPRESENTATIONS AND PROBABILISTIC REASONING." International Journal of Computational Intelligence and Applications 01, no. 03 (2001): 273–85. http://dx.doi.org/10.1142/s146902680100024x.
Texte intégralSurendra Lakkaraju. "AI-Powered Dynamic Risk Scoring for E-commerce Transactions." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 11, no. 1 (2025): 3515–26. https://doi.org/10.32628/cseit251112363.
Texte intégralArya, Shivvrat, Tahrima Rahman, and Vibhav Gogate. "Neural Network Approximators for Marginal MAP in Probabilistic Circuits." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 10 (2024): 10918–26. http://dx.doi.org/10.1609/aaai.v38i10.28966.
Texte intégralYu, Yaocheng, Bin Shuai, and Wencheng Huang. "Resilience evaluation of train control on-board system based on multi-dimensional continuous-time Bayesian network." Reliability Engineering & System Safety 246 (June 2024): 110099. http://dx.doi.org/10.1016/j.ress.2024.110099.
Texte intégralLiu, Jianyu, Linxue Zhao, and Yanlong Mao. "Bayesian regularized NAR neural network based short-term prediction method of water consumption." E3S Web of Conferences 118 (2019): 03024. http://dx.doi.org/10.1051/e3sconf/201911803024.
Texte intégralStemmer, Marcelo Ricard, Camila Pontes Brito da Costa, Jaqueline Vargas, and Mário Lúcio Roloff. "Artificial Intelligent Systems for Quality Assurance in Small Series Production." Key Engineering Materials 613 (May 2014): 279–87. http://dx.doi.org/10.4028/www.scientific.net/kem.613.279.
Texte intégralKling, Gerhard, Charles Harvey, and Mairi Maclean. "Establishing Causal Order in Longitudinal Studies Combining Binary and Continuous Dependent Variables." Organizational Research Methods 20, no. 4 (2015): 770–99. http://dx.doi.org/10.1177/1094428115618760.
Texte intégral