Littérature scientifique sur le sujet « Convolution inequality »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Convolution inequality ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Convolution inequality"
Pycia, M. « A convolution inequality ». Aequationes Mathematicae 57, no 2-3 (1 mai 1999) : 185–200. http://dx.doi.org/10.1007/s000100050076.
Texte intégralLatała, R., et J. O. Wojtaszczyk. « On the infimum convolution inequality ». Studia Mathematica 189, no 2 (2008) : 147–87. http://dx.doi.org/10.4064/sm189-2-5.
Texte intégralBeckner, William. « Pitt's inequality with sharp convolution estimates ». Proceedings of the American Mathematical Society 136, no 05 (30 novembre 2007) : 1871–86. http://dx.doi.org/10.1090/s0002-9939-07-09216-7.
Texte intégralWalter, W., et V. Weckesser. « An integral inequality of convolution type ». Aequationes Mathematicae 46, no 1-2 (août 1993) : 200. http://dx.doi.org/10.1007/bf01834008.
Texte intégralCwikel, Michael, et Ronald Kerman. « On a convolution inequality of Saitoh ». Proceedings of the American Mathematical Society 124, no 3 (1996) : 773–77. http://dx.doi.org/10.1090/s0002-9939-96-03068-7.
Texte intégralZhao, Junjian, Wei-Shih Du et Yasong Chen. « New Generalizations and Results in Shift-Invariant Subspaces of Mixed-Norm Lebesgue Spaces \({L_{\vec{p}}(\mathbb{R}^d)}\) ». Mathematics 9, no 3 (25 janvier 2021) : 227. http://dx.doi.org/10.3390/math9030227.
Texte intégralOberlin, Daniel M. « A Multilinear Young's Inequality ». Canadian Mathematical Bulletin 31, no 3 (1 septembre 1988) : 380–84. http://dx.doi.org/10.4153/cmb-1988-054-0.
Texte intégralBorwein, David, et Werner Kratz. « Weighted Convolution Operators on ℓp ». Canadian Mathematical Bulletin 48, no 2 (1 juin 2005) : 175–79. http://dx.doi.org/10.4153/cmb-2005-015-x.
Texte intégralChrist, Michael, et Qingying Xue. « Smoothness of extremizers of a convolution inequality ». Journal de Mathématiques Pures et Appliquées 97, no 2 (février 2012) : 120–41. http://dx.doi.org/10.1016/j.matpur.2011.09.002.
Texte intégralRomán-Flores, H., A. Flores-Franulič et Y. Chalco-Cano. « A convolution type inequality for fuzzy integrals ». Applied Mathematics and Computation 195, no 1 (janvier 2008) : 94–99. http://dx.doi.org/10.1016/j.amc.2007.04.072.
Texte intégralThèses sur le sujet "Convolution inequality"
Křepela, Martin. « Forever Young : Convolution Inequalities in Weighted Lorentz-type Spaces ». Licentiate thesis, Karlstads universitet, Institutionen för matematik och datavetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-31754.
Texte intégralPaper II was a manuscript at the time of the defense.
Shu, Yan. « Opérateurs d’inf-convolution et inégalités de transport sur les graphes ». Thesis, Paris 10, 2016. http://www.theses.fr/2016PA100096/document.
Texte intégralIn this thesis, we interest in different inf-convolution operators and their applications to a class of general transportation inequalities, more specifically in the graphs. Therefore, our research topic fits in the theories of transportation and functional analysis. By introducing a gradient notion adapting to a discrete space (more generally to all space in which all closed balls are compact), we prove that some inf-convolution operators are solutions of a Hamilton-Jacobi's inequation. This result allows us to extend a classical theorem from Bobkov, Gentil and Ledoux. More precisely, we prove that, in a graph, some weak transport inequalities are equivalent to the hypercontractivity of inf-convolution operators. Thanks to this result, we deduce some properties concerning different functional inequalities, including Log-Sobolev inequalities and weak-transport inequalities. Besides, we study some general properties (differentiability, convexity, extreme points etc.) of different inf-convolution operators, including the one before, but also an operator related to a physical model (and to a large deviation phenomenon). We stay always in a graph. Secondly, we interest in connections between different notions of discrete Ricci curvature on the graphs which are proposed by several authors in the recent years, and functional inequalities of type transport-entropy, or transport-information related to a Markov chain. We also obtain an extension of Bonnet-Myers' result: an upper bound on the diameter of a graph of which the curvature is floored in some ways. Finally, restricting in the real line, we obtains a characterisation of a weak transport inequality and a log-Sobolev inequality restricted to convex functions. These results are from the geometrical properties related to the convex ordering
Gozé, Vincent. « Une version effective du théorème des nombres premiers de Wen Chao Lu ». Electronic Thesis or Diss., Littoral, 2024. http://www.theses.fr/2024DUNK0725.
Texte intégralThe prime number theorem, first proved in 1896 using complex analysis, gives the main term for the asymptotic distribution of prime numbers. It was not until 1949 that the first so-called "elementary" proof was published: it rests strictly on real analysis.In 1999, Wen Chao Lu obtained by an elementary method an error term in the prime number theorem very close to the one provided by the zero-free region of the Riemann zeta function given by La Vallée Poussin at the end of the 19th century. In this thesis, we make Lu's result explicit in order, firstly, to give the best error term obtained by elementary methods so far, and secondly, to explore the limits of his method
Křepela, Martin. « The Weighted Space Odyssey ». Doctoral thesis, Karlstads universitet, Institutionen för matematik och datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-41944.
Texte intégralOperators acting on function spaces are classical subjects of study in functional analysis. This thesis contributes to the research on this topic, focusing particularly on integral and supremal operators and weighted function spaces. Proving boundedness conditions of a convolution-type operator between weighted Lorentz spaces is the first type of a problem investigated here. The results have a form of weighted Young-type convolution inequalities, addressing also optimality properties of involved domain spaces. In addition to that, the outcome includes an overview of basic properties of some new function spaces appearing in the proven inequalities. Product-based bilinear and multilinear Hardy-type operators are another matter of focus. It is characterized when a bilinear Hardy operator inequality holds either for all nonnegative or all nonnegative and nonincreasing functions on the real semiaxis. The proof technique is based on a reduction of the bilinear problems to linear ones to which known weighted inequalities are applicable. The last part of the presented work concerns iterated supremal and integral Hardy operators, a basic Hardy operator with a kernel and applications of these to more complicated weighted problems and embeddings of generalized Lorentz spaces. Several open problems related to missing cases of parameters are solved, completing the theory of the involved fundamental Hardy-type operators.
Artikel 9 publicerad i avhandlingen som manuskript med samma titel.
Strzelecki, Michał. « Functional and transport inequalities and their applications to concentration of measure ». Doctoral thesis, 2019. https://depotuw.ceon.pl/handle/item/3539.
Texte intégralThis thesis is devoted to the study of functional and transportation inequalities connected to the concentration of measure phenomenon. In the first part, we work in the classical setting of smooth functions and are interested in the concentration between the exponential and Gaussian levels. We prove that a probability measure which satisfies a Beckner-type inequality of Latała and Oleszkiewicz, also satisfies a modified log-Sobolev inequality. As a corollary, we obtain improved (dimension-free) two-level concentration for products of such measures. The second, more extensive, part is concerned with concentration of measure for convex functions. Our main tool, used throughout, is the theory of weak transportation inequalities introduced recently by Gozlan, Roberto, Samson, and Tetali. We start by presenting a characterization of probability measures on the real line which satisfy the convex log-Sobolev inequality. This allows us to give concentration estimates of the lower and upper tails of convex Lipschitz functions (the latter were not known before). We then prove that a probability measure on $\mathbb{R}^n$ which satisfies the convex Poincar\'e inequality also satisfies a Bobkov--Ledoux modified log-Sobolev inequality, extending results obtained by other authors for measures on $\mathbb{R}$. We also present refined concentration of measure inequalities, which are consequences of weak transportation inequalities (or, equivalently, their dual formulations: convex infimum convolution inequalities). This includes applications to concentration for non-Lipschitz convex functions. Our last result concerns convex infimum convolution inequalities with optimal cost functions for measures with log-concave tails. As a corollary, we obtain comparison of weak and strong moments of random vectors with independent coordinates with log-concave tails.
Lemańczyk, Michał. « Recurrence of stochastic processes in some concentration of measure and entropy problems ». Doctoral thesis, 2022. https://depotuw.ceon.pl/handle/item/4158.
Texte intégralNiech X = (Xi)i∈Z, gdzie Xi ∈ X a X jest (mierzaln¡) przestrzeni¡ stanów, b¦dzie procesem stochasty- cznym. Niniejsza rozprawa doktorska koncentruje si¦ na procesach czasów powrotu R = (Ri)i∈Z kolejnych powrotów Xi do A oraz ich roli zarówno w teorii prawdopodobie«stwa, jak i w teorii ergody- cznej. Przypomnijmy, »e dla danego podzbioru A ⊂ X odpowiadaj¡cy mu proces czasów powrotu jest zde niowany jako Ri = inf{j ≥ 0 : Xj ∈ A}, i = 0, inf{j > Ri−1 : Xj ∈ A}, i ≥ 1, sup{j < Ri+1 : Xj ∈ A}, i ≤ −1. (1.1) Gªównym rezultatem rozprawy w teorii prawdopodobie«stwa jest dowód nierówno±ci Bernsteina dla funkcjonaªów addytywnych ogólnych, niekoniecznie silnie aperiodycznych, ªa«cuchów Markowa, co daje odpowied¹ na pytanie sformuªowane w pracy [1] (patrz [A3]). Dowodzimy równie» pewnej nowej wersji nierówno±ci Bernsteina dla 1-zale»nych procesów (klasa ta jest silnie zwi¡zana z ªa«cuchami Markowa dzi¦ki tzw. technice regeneracji). Gªówne rezultaty w teorii ergodycznej dotycz¡ dokªadnych wzorów, b¡d¹ nierówno±ci, zwi¡zanych z entropi¡ (ang. entropy rate) punktowego iloczynu procesów (patrz [A1]). Staj¡ si¦ one narz¦dziem do rozwi¡zania kilku otwartych problemów. Podajemy nowy, jawny wzór na ci±nienie topologiczne ukªadów BBB-wolnych oraz, w pewnych przypadkach, dowodzimy jedyno±ci stanów równowagi dla ukªadu wyznaczonego przez BBB (co rozszerza rezultaty o wewn¦trznej ergodyczno±ci udowodnione w [3, 2]). Odpowiadamy na pytanie postawione w [3] o braku wªasno±ci Gibbsa dla miary o maksymalnej entropii (patrz [A2]). W ko«cu, odpowiadamy na kilka pyta« doty- cz¡cych entropii ukªadów BBB-wolnych z pracy [2] (patrz [A1]). Cz¦±¢ rezultatów rozprawy jest nowa, pozostaªe rezultaty pochodz¡ z nast¦puj¡cych trzech artykuªów: [A1] J. Kuªaga-Przymus and M.D. Lema«czyk. Entropy rate of product of independent processes. Preprint: arXiv:2004.07648, 2020. [A2] J. Kuªaga-Przymus and M.D. Lema«czyk. Hereditary subshifts whose measure of maximal en- tropy has no Gibbs property. To appear in Colloquium Mathematicum, arXiv:2004.07643, 2020. [A3] M.D. Lema«czyk. General Bernstein-like inequality for additive functionals of Markov chains. Journal of Theoretical Probability, 2020.
Chapitres de livres sur le sujet "Convolution inequality"
Brown, Gavin, et Larry Shepp. « A Convolution Inequality ». Dans Contributions to Probability and Statistics, 51–57. New York, NY : Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3678-8_4.
Texte intégralChrist, Michael. « On Young’s Convolution Inequality for Heisenberg Groups ». Dans Geometric Aspects of Harmonic Analysis, 223–60. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72058-2_6.
Texte intégralGötze, Friedrich, et Andrei Yu Zaitsev. « A Multiplicative Inequality for Concentration Functions of n-Fold Convolutions ». Dans High Dimensional Probability II, 39–47. Boston, MA : Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1358-1_3.
Texte intégralGrimmett, Geoffrey R., et David R. Stirzaker. « Discrete random variables ». Dans Probability and Random Processes, 46–88. Oxford University PressOxford, 2001. http://dx.doi.org/10.1093/oso/9780198572237.003.0003.
Texte intégralChambers, Robert G. « Differentials and Convex Analysis ». Dans Competitive Agents in Certain and Uncertain Markets, 7–64. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190063016.003.0002.
Texte intégralT. Nanthikattu, Joel, Navaneeth N, Gokul D, Sonette T, Binesh T, Binish M C et Vinu Thomas. « GPU based Segmentation and Classification of Brain Tumour from MRI Images ». Dans New Frontiers in Communication and Intelligent Systems, 17–23. Soft Computing Research Society, 2021. http://dx.doi.org/10.52458/978-81-95502-00-4-3.
Texte intégralActes de conférences sur le sujet "Convolution inequality"
Jog, Varun. « A convolution inequality for entropy over Z2 ». Dans 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017. http://dx.doi.org/10.1109/isit.2017.8007114.
Texte intégralJin, Ce, et Yinzhan Xu. « Shaving Logs via Large Sieve Inequality : Faster Algorithms for Sparse Convolution and More ». Dans STOC '24 : 56th Annual ACM Symposium on Theory of Computing. New York, NY, USA : ACM, 2024. http://dx.doi.org/10.1145/3618260.3649605.
Texte intégralKumar, Sivaprasad, et Virendra Kumar. « On the Fekete-Szego Inequality for a Class of Analytic Functions Defined by Convolution ». Dans Annual International Conference on Computational Mathematics, Computational Geometry & Statistics. Global Science and Technology Forum (GSTF), 2012. http://dx.doi.org/10.5176/2251-1911_cmcgs59.
Texte intégralYao, Yunxiang, et Wai Ho Mow. « Optimal Index Assignment for Scalar Quantizers and M-PSK via a Discrete Convolution-Rearrangement Inequality ». Dans 2021 IEEE International Symposium on Information Theory (ISIT). IEEE, 2021. http://dx.doi.org/10.1109/isit45174.2021.9517984.
Texte intégralPapoulia, Katerina D., Vassilis P. Panoskaltsis et Igor Korovajchuk. « Some Equivalences in the Theory of Linear Viscoelasticity and Their Implications in Modeling and Simulation ». Dans ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1191.
Texte intégralJing Su, Qing Liu, Meilin Wang, Jiangzhong Cao et Wing-Kuen Ling. « Design of convolution neural network with frequency selectivity for wearable camera embed glasses based image recognition systems via nonconvex functional inequality constrained sparse optimization approach ». Dans 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE). IEEE, 2016. http://dx.doi.org/10.1109/isie.2016.7745045.
Texte intégralWalk, Philipp, et Peter Jung. « On a reverse ℓ2-inequality for sparse circular convolutions ». Dans ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638539.
Texte intégralWang, Wenxiao, Cong Fu, Jishun Guo, Deng Cai et Xiaofei He. « COP : Customized Deep Model Compression via Regularized Correlation-Based Filter-Level Pruning ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/525.
Texte intégral