Articles de revues sur le sujet « Copper Antimony Sulfide »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Copper Antimony Sulfide ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Sarswat, Prashant K., and Michael L. Free. "Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode." International Journal of Photoenergy 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/154694.
Texte intégralSolozhenkin, Petr M. "Technology of Dry Wastes Processing of Sorption and Solutions of Antimony Chlorides." Transbaikal State University Journal 30, no. 1 (2024): 73–80. http://dx.doi.org/10.21209/2227-9245-2024-30-1-73-80.
Texte intégralVinayakumar, V., S. Shaji, D. Avellaneda, J. A. Aguilar-Martínez, and B. Krishnan. "Copper antimony sulfide thin films for visible to near infrared photodetector applications." RSC Advances 8, no. 54 (2018): 31055–65. http://dx.doi.org/10.1039/c8ra05662e.
Texte intégralWang, Wei, Zheng Xu, Song Tao Huang, et al. "Characteristics Research and Selective Leaching of Anode Slime with High Content of Copper and Stannum." Advanced Materials Research 1010-1012 (August 2014): 1594–97. http://dx.doi.org/10.4028/www.scientific.net/amr.1010-1012.1594.
Texte intégralZhang, Feng, Keqiang Chen, Xiantao Jiang, et al. "Nonlinear optical absorption and ultrafast carrier dynamics of copper antimony sulfide semiconductor nanocrystals." Journal of Materials Chemistry C 6, no. 33 (2018): 8977–83. http://dx.doi.org/10.1039/c8tc01606b.
Texte intégralRylnikova, Marina, Viktor Fedotenko, and Natalia Mitishova. "Influence of structural and textural features of ores and rocks on mine dust explosion hazard during development of pyrite deposits." E3S Web of Conferences 192 (2020): 03017. http://dx.doi.org/10.1051/e3sconf/202019203017.
Texte intégralZeng, Qiang, Yunxiang Di, Chun Huang, et al. "Famatinite Cu3SbS4 nanocrystals as hole transporting material for efficient perovskite solar cells." Journal of Materials Chemistry C 6, no. 30 (2018): 7989–93. http://dx.doi.org/10.1039/c8tc02133c.
Texte intégralZou, Yu, and Jiang Jiang. "Colloidal synthesis of chalcostibite copper antimony sulfide nanocrystals." Materials Letters 123 (May 2014): 66–69. http://dx.doi.org/10.1016/j.matlet.2014.02.069.
Texte intégralXu, Dongying, Shuling Shen, Yejun Zhang, Hongwei Gu, and Qiangbin Wang. "Selective Synthesis of Ternary Copper–Antimony Sulfide Nanocrystals." Inorganic Chemistry 52, no. 22 (2013): 12958–62. http://dx.doi.org/10.1021/ic401291a.
Texte intégralRath, Thomas, Andrew J. MacLachlan, Michael D. Brown, and Saif A. Haque. "Structural, optical and charge generation properties of chalcostibite and tetrahedrite copper antimony sulfide thin films prepared from metal xanthates." Journal of Materials Chemistry A 3, no. 47 (2015): 24155–62. http://dx.doi.org/10.1039/c5ta05777a.
Texte intégralVolodin, Valeriy, Alina Nitsenko, Xeniya Linnik, and Sergey Trebukhov. "Distribution of Rare Elements in Distillation Processing of Polymetallic Matte." Metals 13, no. 12 (2023): 1934. http://dx.doi.org/10.3390/met13121934.
Texte intégralvan Embden, Joel, and Yasuhiro Tachibana. "Synthesis and characterisation of famatinite copper antimony sulfide nanocrystals." Journal of Materials Chemistry 22, no. 23 (2012): 11466. http://dx.doi.org/10.1039/c2jm32094k.
Texte intégralPowell, Anthony V., Raquel Paniagua, Paz Vaqueiro, and Ann M. Chippindale. "An Antimony Sulfide with Copper Pillars: [C4H12N2]0.5[CuSb6S10]." Chemistry of Materials 14, no. 3 (2002): 1220–24. http://dx.doi.org/10.1021/cm010751f.
Texte intégralPowell, Anthony V., Sylvain Boissière, and Ann M. Chippindale. "A new mixed-valent copper–antimony sulfide: [H2NCH2CH2NH2]0.5[Cu2SbS3]." Journal of the Chemical Society, Dalton Transactions, no. 22 (2000): 4192–95. http://dx.doi.org/10.1039/b005111j.
Texte intégralOrnelas-Acosta, R. E., S. Shaji, D. Avellaneda, G. A. Castillo, T. K. Das Roy, and B. Krishnan. "Thin films of copper antimony sulfide: A photovoltaic absorber material." Materials Research Bulletin 61 (January 2015): 215–25. http://dx.doi.org/10.1016/j.materresbull.2014.10.027.
Texte intégralRamasamy, Karthik, Hunter Sims, William H. Butler, and Arunava Gupta. "Mono-, Few-, and Multiple Layers of Copper Antimony Sulfide (CuSbS2): A Ternary Layered Sulfide." Journal of the American Chemical Society 136, no. 4 (2014): 1587–98. http://dx.doi.org/10.1021/ja411748g.
Texte intégralMcNulty, Brian A., Simon M. Jowitt, and Ivan Belousov. "THE IMPORTANCE OF GEOLOGY IN ASSESSING BY- AND COPRODUCT METAL SUPPLY POTENTIAL; A CASE STUDY OF ANTIMONY, BISMUTH, SELENIUM, AND TELLURIUM WITHIN THE COPPER PRODUCTION STREAM." Economic Geology 117, no. 6 (2022): 1367–85. http://dx.doi.org/10.5382/econgeo.4919.
Texte intégralCho, Ara, Shahara Banu, Kihwan Kim, et al. "Selective thin film synthesis of copper-antimony-sulfide using hybrid ink." Solar Energy 145 (March 2017): 42–51. http://dx.doi.org/10.1016/j.solener.2016.12.048.
Texte intégralSuehiro, Satoshi, Keisuke Horita, Masayoshi Yuasa, et al. "Synthesis of Copper–Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells." Inorganic Chemistry 54, no. 16 (2015): 7840–45. http://dx.doi.org/10.1021/acs.inorgchem.5b00858.
Texte intégralRamos Aquino, Jose Agustin, Dorian Leonardo Rodriguez Vela, Sadasivan Shaji, David Avellaneda Avellaneda, and Bindu Krishnan. "Spray pyrolysed thin films of copper antimony sulfide as photovoltaic absorber." physica status solidi (c) 13, no. 1 (2015): 24–29. http://dx.doi.org/10.1002/pssc.201510102.
Texte intégralPowell, Anthony V., Raquel Paniagua, Paz Vaqueiro, and Ann M. Chippindale. "ChemInform Abstract: An Antimony Sulfide with Copper Pillars: [C4H12N2]0.5 [CuSb6S10]." ChemInform 33, no. 23 (2010): no. http://dx.doi.org/10.1002/chin.200223021.
Texte intégralOráč, Dušan, Martina Laubertová, František Molnár, Jakub Klimko, Vladimír Marcinov, and Jana Pirošková. "Thermodynamic Study Proposal of Processing By-Product Containing Au, Ag, Cu and Fe Sulfides from Antimony Ore Treatment." Processes 13, no. 3 (2025): 842. https://doi.org/10.3390/pr13030842.
Texte intégralIshaq, Muhammad, Hui Deng, Umar Farooq, et al. "Efficient Copper‐Doped Antimony Sulfide Thin‐Film Solar Cells via Coevaporation Method." Solar RRL 3, no. 12 (2019): 1900305. http://dx.doi.org/10.1002/solr.201900305.
Texte intégralLiu, Ziliang, Yizhe Tong, Xingmin He, and Longyi Chen. "Study on Optimization of Deep Purification Process Design of Zinc Oxygen Pressure Acid Leaching Solution." Journal of Physics: Conference Series 2738, no. 1 (2024): 012013. http://dx.doi.org/10.1088/1742-6596/2738/1/012013.
Texte intégralAdewoyin, Adeyinka D. "Absorber layer optimisation of copper antimony sulfide thin film photovoltaics using numerical simulation." Superlattices and Microstructures 158 (October 2021): 107029. http://dx.doi.org/10.1016/j.spmi.2021.107029.
Texte intégralSwathi, S., R. Yuvakkumar, P. Senthil Kumar, G. Ravi, and Dhayalan Velauthapillai. "Polyvinylpyrrolidone-assisted novel copper antimony sulfide nanorods for highly efficient hydrogen evolution reaction." Fuel 314 (April 2022): 123096. http://dx.doi.org/10.1016/j.fuel.2021.123096.
Texte intégralBella, M., C. Rivero, S. Blayac, H. Basti, M. C. Record, and P. Boulet. "Oleylamine-assisted solvothermal synthesis of copper antimony sulfide nanocrystals: Morphology and phase control." Materials Research Bulletin 90 (June 2017): 188–94. http://dx.doi.org/10.1016/j.materresbull.2017.02.036.
Texte intégralDevi, Chandni, and Rajesh Mehra. "Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide)." Journal of Materials Science 54, no. 7 (2019): 5615–24. http://dx.doi.org/10.1007/s10853-018-03265-y.
Texte intégralŠtrbac, Nada, Miroslav Sokić, Aleksandra Mitovski, et al. "Investigation of Bi2S3 oxidation process at elevated temperatures in the air atmosphere." Tehnika 75, no. 6 (2020): 587–93. http://dx.doi.org/10.5937/tehnika2005587s.
Texte intégralSun, Guilin, Guochun Dong, Sufen Tao, Yunjin Xia, and Chao Chen. "Effect of Sulfur on Antimony-Induced High-Temperature Ductility Deterioration of C-Mn Steel." Metals 13, no. 1 (2023): 130. http://dx.doi.org/10.3390/met13010130.
Texte intégralHu, Ping, Yulian Dong, Guowei Yang, et al. "Hollow CuSbSy Coated by Nitrogen-Doped Carbon as Anode Electrode for High-Performance Potassium-Ion Storage." Batteries 9, no. 5 (2023): 238. http://dx.doi.org/10.3390/batteries9050238.
Texte intégralDosmukhamedov, N. K., E. E. Zholdasbay, A. A. Argyn, Yu B. Icheva, and M. B. Kurmanseitov. "Enlarged tests on the processing of copper-lead mattes obtained after reductive smelting of balanced feed charge." Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources 337, no. 2 (2025): 75–84. https://doi.org/10.31643/2026/6445.19.
Texte intégralHota, Poulami, Arijit Kapuria, Saptasree Bose, Dilip K. Maiti, and Shyamal K. Saha. "The role of lone-pair electrons on electrocatalytic activity of copper antimony sulfide nanostructures." Materials Chemistry and Physics 291 (November 2022): 126676. http://dx.doi.org/10.1016/j.matchemphys.2022.126676.
Texte intégralKishore Kumar, Y. B., S. Guru Prasad, A. S. Swapna Smitha, et al. "Effect of carrier gas on copper antimony sulfide thin films by spray pyrolytic approach." Chalcogenide Letters 21, no. 9 (2024): 719–27. http://dx.doi.org/10.15251/cl.2024.219.719.
Texte intégralKumar, B. Hemanth, S. Shaji, and M. C. Santhosh Kumar. "Effect of substrate temperature on properties of co-evaporated copper antimony sulfide thin films." Thin Solid Films 697 (March 2020): 137838. http://dx.doi.org/10.1016/j.tsf.2020.137838.
Texte intégralSribenjawan, Janthima, Duanghatai Raknual, Veeramol Vailikhit, Nareerat Kitisripanya, and Auttasit Tubtimtae. "Facile synthesis of copper-antimony-sulfide nanostructures on WO3 electrodes: Investigation of electrochemical performance." Materials Letters 245 (June 2019): 126–29. http://dx.doi.org/10.1016/j.matlet.2019.02.120.
Texte intégralBlanco-Vino, Walter, Gerardo Zamora, and Javier I. Ordóñez. "Selective Removal of Arsenic and Antimony from Pb-Ag Sulfide Concentrates by Alkaline Leaching: Thermodynamic and Kinetic Studies." Mining 4, no. 2 (2024): 284–301. http://dx.doi.org/10.3390/mining4020017.
Texte intégralKhanchuk, A. I., V. P. Molchanov, and D. V. Androsov. "THE FIRST INFORMATION ABOUT THE GOLD-COPPER MINERALIZATION OF THE KONTORSKOYE ORE OPENING (ARIADNE INTRUSION OF ULTRABASITES, PRIMORYE)." Доклады Российской академии наук. Науки о Земле 511, no. 1 (2023): 5–11. http://dx.doi.org/10.31857/s268673972260240x.
Texte intégralBarros, Kayo Santana, Vicente Schaeffer Vielmo, Belén Garrido Moreno, Gabriel Riveros, Gerardo Cifuentes, and Andréa Moura Bernardes. "Chemical Composition Data of the Main Stages of Copper Production from Sulfide Minerals in Chile: A Review to Assist Circular Economy Studies." Minerals 12, no. 2 (2022): 250. http://dx.doi.org/10.3390/min12020250.
Texte intégralRamasamy, Karthik, Benjamin Tien, P. S. Archana, and Arunava Gupta. "Copper antimony sulfide (CuSbS2) mesocrystals: A potential counter electrode material for dye-sensitized solar cells." Materials Letters 124 (June 2014): 227–30. http://dx.doi.org/10.1016/j.matlet.2014.03.046.
Texte intégralRamasamy, Karthik, Hunter Sims, William H. Butler, and Arunava Gupta. "Selective Nanocrystal Synthesis and Calculated Electronic Structure of All Four Phases of Copper–Antimony–Sulfide." Chemistry of Materials 26, no. 9 (2014): 2891–99. http://dx.doi.org/10.1021/cm5005642.
Texte intégralShapouri, Samaneh, Elnaz Irani, Payam Rajabi Kalvani, et al. "Substrate-Dependent Characteristics of CuSbS2 Solar Absorber Layers Grown by Spray Pyrolysis." Coatings 15, no. 6 (2025): 683. https://doi.org/10.3390/coatings15060683.
Texte intégralShaybekov, R. I., B. A. Makeev, N. N. Kononkova, S. I. Isaenko, and E. M. Tropnikov. "Palladium tellurides and bismuthtellurides in sulfide copper-nickel ores of the Savabeisky ore occurrence (Nenets Autonomous District, Russsia)." LITHOSPHERE (Russia) 21, no. 4 (2021): 574–94. http://dx.doi.org/10.24930/1681-9004-2021-21-4-574-594.
Texte intégralZhang, Yu, Jianhua Tian, Kejian Jiang, Jinhua Huang, Huijia Wang, and Yanlin Song. "In situ gas-solid reaction for fabrication of copper antimony sulfide thin film as photovoltaic absorber." Materials Letters 209 (December 2017): 23–26. http://dx.doi.org/10.1016/j.matlet.2017.07.106.
Texte intégralAskarova, Gulzhan, Mels Shautenov, and Kulzhamal Nogaeva. "Flotation enrichment of resistant gold ores." E3S Web of Conferences 168 (2020): 00005. http://dx.doi.org/10.1051/e3sconf/202016800005.
Texte intégralShaji, S., V. Vinayakumar, B. Krishnan, et al. "Copper antimony sulfide nanoparticles by pulsed laser ablation in liquid and their thin film for photovoltaic application." Applied Surface Science 476 (May 2019): 94–106. http://dx.doi.org/10.1016/j.apsusc.2019.01.072.
Texte intégralKrishnan, B., S. Shaji, and R. Ernesto Ornelas. "Progress in development of copper antimony sulfide thin films as an alternative material for solar energy harvesting." Journal of Materials Science: Materials in Electronics 26, no. 7 (2015): 4770–81. http://dx.doi.org/10.1007/s10854-015-3092-2.
Texte intégralRamasamy, Karthik, Hunter Sims, William H. Butler, and Arunava Gupta. "ChemInform Abstract: Selective Nanocrystal Synthesis and Calculated Electronic Structure of All Four Phases of Copper-Antimony-Sulfide." ChemInform 45, no. 29 (2014): no. http://dx.doi.org/10.1002/chin.201429028.
Texte intégralKvyatkovskiy, S. A., S. M. Kozhakhmetov, A. S. Semenova, M. A. Dyussebekova, and A. A. Shakhalov. "Hydrothermal treatment of sinters containing thiosalts of non-ferrous metals." Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources 335, no. 4 (2024): 42–49. http://dx.doi.org/10.31643/2025/6445.38.
Texte intégralChen, Keqiang, Jing Zhou, Wen Chen, Qiao Chen, Peng Zhou, and Yueli Liu. "A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield." Nanoscale 8, no. 9 (2016): 5146–52. http://dx.doi.org/10.1039/c5nr09097k.
Texte intégral