Littérature scientifique sur le sujet « COPPER OXIDE NANOPARTICLE »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « COPPER OXIDE NANOPARTICLE ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "COPPER OXIDE NANOPARTICLE"
Saif Hasan, Syed, Sanjay Singh, Rasesh Y. Parikh, Mahesh S. Dharne, Milind S. Patole, B. L. V. Prasad et Yogesh S. Shouche. « Bacterial Synthesis of Copper/Copper Oxide Nanoparticles ». Journal of Nanoscience and Nanotechnology 8, no 6 (1 juin 2008) : 3191–96. http://dx.doi.org/10.1166/jnn.2008.095.
Texte intégralLiang, Septimus H., Shiliang Wang et David B. Pedersen. « Adsorption of HCN onto Copper@Copper-Oxide Core–Shell Nanoparticle Systems ». Adsorption Science & ; Technology 27, no 4 (mai 2009) : 349–61. http://dx.doi.org/10.1260/026361709790252632.
Texte intégralHanisha R, Hanisha R., Udayakumar R. Udayakumar R, Selvayogesh S. Selvayogesh S, Keerthivasan P. Keerthivasan P et Gnanasekaran R. Gnanasekaran R. « Anti Fungal Activity of Green Synthesized Copper Nanoparticles Using Plant Extract of Bryophyllum Pinnatum (Lam.) and Polyalthia Longifolia (Sonn.) R ». Biosciences Biotechnology Research Asia 20, no 1 (30 mars 2023) : 317–28. http://dx.doi.org/10.13005/bbra/3091.
Texte intégralLakshmi, Augustine, Athisayaraj Emi Princess Prasanna et Chinnapiyan Vedhi. « Synthesis, Characterisation and Capacitive Behaviour of Poly(3,4-ethylenedioxythiophene)-Copper Oxide Nanocomposites ». Advanced Materials Research 678 (mars 2013) : 273–77. http://dx.doi.org/10.4028/www.scientific.net/amr.678.273.
Texte intégralDyah Rifani, Nabila, Rebriarina Hapsari, Tyas Prihatiningsih et Ali Khumaeni. « Synthesis, characterization, and antimicrobial properties of copper oxide nanoparticles produced by laser ablation method in chitosan solution ». Journal of Applied Research and Technology, no 2 (27 avril 2023) : 196–204. http://dx.doi.org/10.22201/icat.24486736e.2023.21.2.1596.
Texte intégralMohamed, HudaElslam, Unal Camdali, Atilla Biyikoglu et Metin Aktas. « Enhancing the Performance of a Vapour Compression Refrigerator System Using R134a with a CuO/CeO2 Nano-refrigerant ». Strojniški vestnik - Journal of Mechanical Engineering 68, no 6 (22 juin 2022) : 395–410. http://dx.doi.org/10.5545/sv-jme.2021.7454.
Texte intégralSamuel Paul, Akintunde Sheyi, Iliya Daniel Bangu, Sani Idris Abubakar et Muawiyya Muazu Muhammad. « Biological synthesis and characterization of copper oxide nanoparticles using aqueous Psidium guajava leave extract and study of antibacterial activity of the copper oxide nanoparticles on Escherichia coli and Staphylococcus aureus ». World Journal of Advanced Research and Reviews 9, no 1 (30 janvier 2021) : 114–20. http://dx.doi.org/10.30574/wjarr.2021.9.1.0513.
Texte intégralCui, Wen Ying, Hyun Jin Yoo, Yun Guang Li, Changyoon Baek et Junhong Min. « Electrospun Nanofibers Embedded with Copper Oxide Nanoparticles to Improve Antiviral Function ». Journal of Nanoscience and Nanotechnology 21, no 8 (1 août 2021) : 4174–78. http://dx.doi.org/10.1166/jnn.2021.19379.
Texte intégralSaputra, Ferry, Boontida Uapipatanakul, Jiann-Shing Lee, Shih-Min Hung, Jong-Chin Huang, Yun-Chieh Pang, John Emmanuel R. Muñoz, Allan Patrick G. Macabeo, Kelvin H. C. Chen et Chung-Der Hsiao. « Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos ». International Journal of Molecular Sciences 22, no 15 (31 juillet 2021) : 8259. http://dx.doi.org/10.3390/ijms22158259.
Texte intégralBlinov, A. V., А. А. Gvozdenko, A. B. Golik, А. А. Blinova, K. S. Slyadneva, M. A. Pirogov et D. G. Maglakelidze. « Synthesising Copper Oxide Nanoparticles and Investigating the Effect of Dispersion Medium Parameters on their Aggregate Stability ». Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no 4 (103) (août 2022) : 95–109. http://dx.doi.org/10.18698/1812-3368-2022-4-95-109.
Texte intégralThèses sur le sujet "COPPER OXIDE NANOPARTICLE"
Dywili, Nomxolisi Ruth. « Development of Metal Nanoparticle-Doped Polyanilino-Graphene Oxide High Performance Supercapacitor Cells ». University of the Western Cape, 2018. http://hdl.handle.net/11394/6251.
Texte intégralSupercapacitors, also known as ultracapacitors or electrochemical capacitors, are considered one of the most important subjects concerning electricity or energy storage which has proven to be problematic for South Africa. In this work, graphene oxide (GO) was supported with platinum, silver and copper nanoparticles anchored with dodecylbenzenesulphonic acid (DBSA) doped polyaniline (PANI) to form nanocomposites. Their properties were investigated with different characterization techniques. The high resolution transmission electron microscopy (HRTEM) revealed GO's nanosheets to be light, flat, transparent and appeared to be larger than 1.5 ?m in thickness. This was also confirmed by high resolution scanning electron microscopy (HRSEM) with smooth surfaces and wrinkled edges observed with the energy dispersive X-ray analysis (EDX) confirming the presence of the functional groups such as carbon and oxygen. The HRTEM analysis of decorated GO with platinum, silver and copper nanoparticles (NPs) revealed small and uniformly dispersed NPs on the surface of GO with mean particle sizes of 2.3 ± 0.2 nm, 2.6 ± 0.3 nm and 3.5 ± 0.5 nm respectively and the surface of GO showed increasing roughness as observed in HRSEM micrographs. The X-ray fluorescence microscopy (XRF) and EDX confirmed the presence of the nanoparticles on the surface of GO as platinum, silver and copper which appeared in abundance in each spectra. Anchoring the GO with DBSA doped PANI revealed that single GO sheets were embedded into the polymer latex, which caused the DBSA-PANI particles to become adsorbed on their surfaces. This process then appeared as dark regions in the HRTEM images. Morphological studies by HRSEM also supported that single GO sheets were embedded into the polymer latex as composite formation appeared aggregated and as bounded particles with smooth and toothed edges.
Roussey, Arthur. « Preparation of Copper-based catalysts for the synthesis of Silicon nanowires ». Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10164.
Texte intégralThe work presented in this PhD thesis aimed at the preparation of copper nanoparticles of controllable size and their utilization as catalysts for the growth of silicon nanowires in a process compatible with standard CMOS technology and at low temperature (< 450°C). The growth of silicon nanowires by Chemical Vapor Deposition (CVD) via the catalytic decomposition of a silicon precursor on metallic nanoparticles at low temperature (Vapor Solid-Solid process) was demonstrated to be possible from an oxidized Cu thin film. However, this process does not allow the control over nanowires diameter, which is controlled by the diameter of the nanoparticle of catalyst. In this PhD is presented a fully bottom-up approach to prepare copper nanoparticles of controllable size directly on a surface without the help of external stabilizer by mean of surface organometallic chemistry. First, the preparation of copper nanoparticles is demonstrated on 3D substrates (silica and titanium nitride nanoparticles), along with the fine comprehension of the formation mechanism of the nanoparticles as a function of the surface properties. Then, this methodology is transferred to planar (2D) substrates typically used in microelectronics (silicon wafers). Surface structure is demonstrated to direct the Cu nanoparticles diameter between 3 to 40 nm. The similarities between the 2D and 3D substrates are discussed. Finally, the activity of the Copper nanoparticles in the growth of Silicon nanowire is presented and it is demonstrated that in our conditions a critical diameter may exist above which the growth occurs
Carew, Alexander Jon. « Fundamental studies into the catalytic properties of metal-oxide supported gold and copper nanoparticles ». Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367710.
Texte intégralYousef, Narin. « Solution-based and flame spray pyrolysis synthesis of cupric oxide nanostructures and their potential application in dye-sensitized solar cells ». Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119329.
Texte intégralMcManus, Paul. « Rhizosphere Interactions Between Copper Oxide Nanoparticles and Wheat Root Exudate in a Sand Matrix ; Influences on Bioavailability and Uptake ». DigitalCommons@USU, 2016. https://digitalcommons.usu.edu/etd/5058.
Texte intégralMårtensson, Niklas. « Optical Properties of Silica-Copper Oxide Thin Films Prepared by Spin Coating ». Thesis, Linköpings universitet, Tillämpad optik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71188.
Texte intégralTejpal, Jyoti. « The use of metal and metal oxide nanoparticles against biofilms ». Thesis, De Montfort University, 2016. http://hdl.handle.net/2086/13114.
Texte intégralHortin, Joshua. « Behavior of Copper Oxide Nanoparticles in Soil Pore Waters as Influenced by Soil Characteristics, Bacteria, and Wheat Roots ». DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6895.
Texte intégralIzaak, T. I., D. О. Martynova, V. V. Maas, E. М. Slavinskaya, А. I. Boronin et Y. W. Chen. « Synthesis and Properties of Ag / CuO / SiO2 Nanocomposites ». Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35611.
Texte intégralBottois, Clément. « Nanoparticules pour la réalisation de couches de transport de trous appliquées au photovoltaïque organique ». Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI025/document.
Texte intégralIn organic solar cells, a doped polymer is the most used material for hole transport between the active layer and the electrode, but his stability can be an important issue. The goal of this PhD thesis was to develop inorganic materials, expected to be more stable, in order to replace polymer based hole transporting layers. Another requirement was to keep the compatibility with solution-based deposition methods. The target was to develop nanoparticle dispersions, deposited at low temperature and giving directly a functional layer, without the need of further treatments which are usually required via sol-gel processes. A first objective of the present work was thus the elaboration of nanoparticles of tungsten oxide, hydrated or non-hydrated, and copper thiocyanate. A microwave-assisted heating synthesis has been used for tungsten oxide, leading to mono-dispersed particles around 30 nm. Concerning copper thiocyanate, a ball milling technique has been chosen. The process parameters have been optimized to obtain nanoparticles to narrow the size distribution as much as possible. The deposition of the nanoparticles has allowed the formation of thin layers and the characterization of their optoelectronic properties, such as work function, which was shown to be a relevant parameter for a use in devices. Organic solar cells with standard or inverted structures have been fabricated using these materials as a hole transporting layer. Good photovoltaic performances have been obtained, especially in the inverted structure, in which the possibility to use copper thiocyanate has been demonstrated for the first time. Ageing experiments under light in a controlled atmosphere have also been carried out and have shown a rapid drop in performances for these cells compared to cells incorporating polymer based hole transport layers
Chapitres de livres sur le sujet "COPPER OXIDE NANOPARTICLE"
Okanigbe, Daniel Ogochukwu. « Extraction of Copper Oxide (II) : Copper Oxide Nanoparticles ». Dans Resource Recovery and Recycling from Waste Metal Dust, 107–31. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22492-8_6.
Texte intégralDas, Dudul, et Pankaj Kalita. « Performance Improvement of a Novel Flat Plate Photovoltaic Thermal (PV/T) System Using Copper Oxide Nanoparticle—Water as Coolant ». Dans Springer Proceedings in Energy, 97–104. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63085-4_14.
Texte intégralArun Kumar, A., R. Subramaniyan@Raja, G. Padmasree, Kodumuri Veerabhadra Rao, K. Anuradha et A. Rathika. « Copper Oxide Nanoparticles for Energy Storage Applications ». Dans Materials for Sustainable Energy Storage at the Nanoscale, 233–40. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003355755-20.
Texte intégralSaha, Ishita, Parimal Karmakar et Debalina Bhattacharya. « Fungi-Mediated Fabrication of Copper Nanoparticles and Copper Oxide Nanoparticles, Physical Characterization and Antimicrobial Activity ». Dans Mycosynthesis of Nanomaterials, 112–25. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003327387-7.
Texte intégralIbrahim, Suriani, Nurul Zariyah Jakaria@Zakaria, Shaifulazuar Rozali, Nik Nazri Nik Ghazali, Mohd Sayuti Ab Karim et Mohd Faizul Mohd Sabri. « Biosynthesis of Copper Oxide Nanoparticles Using Camellia Sinensis Plant Powder ». Dans Advances in Material Sciences and Engineering, 233–38. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8297-0_26.
Texte intégralSingh, Ravindra Pratap. « Potential of Biogenic Plant-Mediated Copper and Copper Oxide Nanostructured Nanoparticles and Their Utility ». Dans Plant Nanobionics, 115–76. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16379-2_5.
Texte intégralAdhikari, Tapan, Garima Dube, S. Kundu et A. K. Patra. « Impact of Copper Oxide Nanoparticles on Growth of Different Bacterial Species ». Dans Water Science and Technology Library, 47–55. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5798-4_5.
Texte intégralJoshi, Archana, Ashutosh Sharma, Rakesh Kumar Bachheti, Azamal Husen et Vinod Kumar Mishra. « Plant-Mediated Synthesis of Copper Oxide Nanoparticles and Their Biological Applications ». Dans Nanomaterials and Plant Potential, 221–37. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05569-1_8.
Texte intégralAlcalà, Jordi, Mercè Roig, Sergi Martín, Aleix Barrera, Alejandro Fernández-Rodríguez, Alberto Pomar, Lluís Balcells, Mariona Coll, Narcís Mestres et Anna Palau. « Potential of Copper Oxide High-Temperature Superconductors for Tailoring Ferromagnetic Spin Textures ». Dans Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 167–82. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_7.
Texte intégralKhan, K. A., M. Shaiful Islam, Abdul Awal, M. N. Islam Khan et A. K. M. Atique Ullah. « Studies on Performances of Copper Oxide Nanoparticles from Catharanthus Roseus Leaf Extract ». Dans Lecture Notes in Electrical Engineering, 179–90. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1570-2_17.
Texte intégralActes de conférences sur le sujet "COPPER OXIDE NANOPARTICLE"
Zlebic, C., Lj Zivanov, N. Blaz, M. Kisic et M. Lukovic. « Characterization of Printed Humidity Sensor Based on Nanoparticle Copper Oxide ». Dans 2020 23rd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS). IEEE, 2020. http://dx.doi.org/10.1109/ddecs50862.2020.9095702.
Texte intégralFujino, M., M. Akaike, N. Matsuoka et T. Suga. « Reduction Reaction Analysis of Nanoparticle Copper Oxide by Formic Acid ». Dans 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.m-5-03.
Texte intégralMcCants, Dale A., Jamil A. Khan, Andrew M. Hayes et Aly Shaaban. « Evaluating the Thermal Characteristics of Copper-II and Zinc-Oxide Nanofluids Flowing Over a Heated Flat Plate ». Dans ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56141.
Texte intégralSofiya Dayana, K., et R. Jothimani. « Preparation and characterization of copper oxide nanoparticle-determination of its structural and optical properties ». Dans 2ND INTERNATIONAL CONFERENCE ON MATERIALS FOR ENERGY AND ENVIRONMENT 2020. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0140312.
Texte intégralTorii, Shuichi. « Turbulent Thermal Fluid Flow Transport Phenomena of Aqueous Suspensions of Nano-Particles ». Dans ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18090.
Texte intégralKedzierski, Mark A. « Effect of CuO Nanoparticle Concentration on R134A/Lubricant Pool Boiling Heat Transfer ». Dans ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52116.
Texte intégralTorii, Shuichi. « Thermal Transport Phenomenon in Circular Pipe Flow Using Different Nanofluids ». Dans ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ipack2013-73043.
Texte intégralFan, Liwu, et J. M. Khodadadi. « Experimental Verification of Expedited Freezing of Nanoparticle-Enhanced Phase Change Materials (NEPCM) ». Dans ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44165.
Texte intégralKhodadadi, J. M., et Liwu Fan. « Expedited Freezing of Nanoparticle-Enhanced Phase Change Materials (NEPCM) Exhibited Through a Simple 1-D Stefan Problem Formulation ». Dans ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88409.
Texte intégralO’Hanley, Harry, Jacopo Buongiorno, Thomas McKrell et Lin-wen Hu. « Measurement and Model Correlation of Specific Heat Capacity of Water-Based Nanofluids With Silica, Alumina and Copper Oxide Nanoparticles ». Dans ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62054.
Texte intégralRapports d'organisations sur le sujet "COPPER OXIDE NANOPARTICLE"
Chefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova et Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, janvier 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Texte intégral