Articles de revues sur le sujet « Cortical organoids »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Cortical organoids ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Bao, Zhongyuan, Kaiheng Fang, Zong Miao, et al. "Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice." Oxidative Medicine and Cellular Longevity 2021 (November 22, 2021): 1–16. http://dx.doi.org/10.1155/2021/6338722.
Texte intégralCamp, J. Gray, Farhath Badsha, Marta Florio, et al. "Human cerebral organoids recapitulate gene expression programs of fetal neocortex development." Proceedings of the National Academy of Sciences 112, no. 51 (2015): 15672–77. http://dx.doi.org/10.1073/pnas.1520760112.
Texte intégralHandcock, Sarah, Kay Richards, Timothy J. Karle, et al. "Three-Dimensional Morphological Characterisation of Human Cortical Organoids Using a Customised Image Analysis Workflow." Organoids 4, no. 1 (2025): 1. https://doi.org/10.3390/organoids4010001.
Texte intégralYang, Woo Sub, Ferdi Ridvan Kiral, and In-Hyun Park. "Telencephalic organoids as model systems to study cortical development and diseases." Organoid 4 (January 25, 2024): e1. http://dx.doi.org/10.51335/organoid.2024.4.e1.
Texte intégralRevah, Omer, Felicity Gore, Kevin W. Kelley, et al. "Maturation and circuit integration of transplanted human cortical organoids." Nature 610, no. 7931 (2022): 319–26. http://dx.doi.org/10.1038/s41586-022-05277-w.
Texte intégralFarcy, Sarah, Alexandra Albert, Pierre Gressens, Alexandre D. Baffet, and Vincent El Ghouzzi. "Cortical Organoids to Model Microcephaly." Cells 11, no. 14 (2022): 2135. http://dx.doi.org/10.3390/cells11142135.
Texte intégralBray, Natasha. "Inroads into cortical organoids." Nature Reviews Neuroscience 20, no. 12 (2019): 717. http://dx.doi.org/10.1038/s41583-019-0237-y.
Texte intégralConforti, P., D. Besusso, V. D. Bocchi, et al. "Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes." Proceedings of the National Academy of Sciences 115, no. 4 (2018): E762—E771. http://dx.doi.org/10.1073/pnas.1715865115.
Texte intégralChandrasegaran, Praveena, Agatha Nabilla Lestari, Matthew C. Sinton, Jay Gopalakrishnan, and Juan F. Quintana. "Modelling host-Trypanosoma brucei gambiense interactions in vitro using human induced pluripotent stem cell-derived cortical brain organoids." F1000Research 12 (July 28, 2023): 437. http://dx.doi.org/10.12688/f1000research.131507.2.
Texte intégralLi, Xiaodong, Abdullah Shopit, and Jingmin Wang. "A Comprehensive Update of Cerebral Organoids between Applications and Challenges." Oxidative Medicine and Cellular Longevity 2022 (December 5, 2022): 1–10. http://dx.doi.org/10.1155/2022/7264649.
Texte intégralMagni, Manuela, Beatrice Bossi, Paola Conforti, et al. "Brain Regional Identity and Cell Type Specificity Landscape of Human Cortical Organoid Models." International Journal of Molecular Sciences 23, no. 21 (2022): 13159. http://dx.doi.org/10.3390/ijms232113159.
Texte intégralSivitilli, Adam A., Jessica T. Gosio, Bibaswan Ghoshal, et al. "Robust production of uniform human cerebral organoids from pluripotent stem cells." Life Science Alliance 3, no. 5 (2020): e202000707. http://dx.doi.org/10.26508/lsa.202000707.
Texte intégralChandrasegaran, Praveena, Agatha Nabilla Lestari, Matthew C. Sinton, Jay Gopalakrishnan, and Juan F. Quintana. "Modelling host-Trypanosoma brucei gambiense interactions in vitro using human induced pluripotent stem cell-derived cortical brain organoids." F1000Research 12 (April 24, 2023): 437. http://dx.doi.org/10.12688/f1000research.131507.1.
Texte intégralRosebrock, Daniel, Sneha Arora, Naresh Mutukula, et al. "Enhanced cortical neural stem cell identity through short SMAD and WNT inhibition in human cerebral organoids facilitates emergence of outer radial glial cells." Nature Cell Biology 24, no. 6 (2022): 981–95. http://dx.doi.org/10.1038/s41556-022-00929-5.
Texte intégralChen, Y., S. Bax, V. Prior, et al. "P12.07.A DEVELOPING NOVEL, MORE STRINGENT EVALUATION PLATFORMS TO ACCELERATE RESEARCH TRANSLATION AND INCREASE SURVIVAL FROM BRAIN CANCER." Neuro-Oncology 26, Supplement_5 (2024): v67. http://dx.doi.org/10.1093/neuonc/noae144.220.
Texte intégralForero-Zapata, Laura, Ariel Lee, Alysson Muotri, Cedric Snethlage, Jon A. Gangoiti, and Bruce A. Barshop. "METABOLOMIC STUDIES IN CORTICAL BRAIN ORGANOIDS." Molecular Genetics and Metabolism 135, no. 4 (2022): 271. http://dx.doi.org/10.1016/j.ymgme.2022.01.038.
Texte intégralHarrison, Charlotte. "Cortical organoids make mouse–human connections." Lab Animal 52, no. 2 (2023): 33. http://dx.doi.org/10.1038/s41684-023-01116-1.
Texte intégralMarsoner, Fabio, Philipp Koch, and Julia Ladewig. "Cortical organoids: why all this hype?" Current Opinion in Genetics & Development 52 (October 2018): 22–28. http://dx.doi.org/10.1016/j.gde.2018.04.008.
Texte intégralShi, Yingchao, Le Sun, Mengdi Wang, et al. "Vascularized human cortical organoids (vOrganoids) model cortical development in vivo." PLOS Biology 18, no. 5 (2020): e3000705. http://dx.doi.org/10.1371/journal.pbio.3000705.
Texte intégralQian, Xuyu, Yijing Su, Christopher D. Adam, et al. "Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation." Cell Stem Cell 26, no. 5 (2020): 766–81. http://dx.doi.org/10.1016/j.stem.2020.02.002.
Texte intégralKan, Ryan, Weihong Ge, Can Yilgor, et al. "CSIG-15. PTN-PTPRZ1 SIGNALING MEDIATES TUMOR-NORMAL CROSSTALK IN GLIOBLASTOMA." Neuro-Oncology 25, Supplement_5 (2023): v43. http://dx.doi.org/10.1093/neuonc/noad179.0171.
Texte intégralPark, Soomin, and Jong-Chan Park. "Advancements in brain organoid models for neurodegenerative disease research." Organoid 4 (December 25, 2024): e12. https://doi.org/10.51335/organoid.2024.4.e12.
Texte intégralSantos, Alexandra C., George Nader, Dana El Soufi El Sabbagh, Karolina Urban, Liliana Attisano, and Peter L. Carlen. "Treating Hyperexcitability in Human Cerebral Organoids Resulting from Oxygen-Glucose Deprivation." Cells 12, no. 15 (2023): 1949. http://dx.doi.org/10.3390/cells12151949.
Texte intégralBen-Yishay, Rakefet Ruth, Naama Herman, Vered Noy, Eyal Mor, Aiham Mansur, and Dana Ishay-Ronen. "Abstract 5847: Normal mammary epithelium of BRCA1 mutation carriers demonstrates increased susceptibility to cell plasticity." Cancer Research 82, no. 12_Supplement (2022): 5847. http://dx.doi.org/10.1158/1538-7445.am2022-5847.
Texte intégralXiang, Yangfei, Yoshiaki Tanaka, Bilal Cakir, et al. "hESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids." Cell Stem Cell 24, no. 3 (2019): 487–97. http://dx.doi.org/10.1016/j.stem.2018.12.015.
Texte intégralNegatu, Seble, Christine Vazquez, Carl Bannerman, Guo-li Ming, and Kellie Jurado. "Forebrain organoids reveal neuronal capacity to elicit protective antiviral responses." Journal of Immunology 212, no. 1_Supplement (2024): 1176_5399. http://dx.doi.org/10.4049/jimmunol.212.supp.1176.5399.
Texte intégralAtamian, Alexander, Marcella Birtele, and Giorgia Quadrato. "Not all cortical organoids are created equal." Nature Cell Biology 24, no. 6 (2022): 805–6. http://dx.doi.org/10.1038/s41556-022-00890-3.
Texte intégralAmiri, Anahita, Gianfilippo Coppola, Soraya Scuderi, et al. "Transcriptome and epigenome landscape of human cortical development modeled in organoids." Science 362, no. 6420 (2018): eaat6720. http://dx.doi.org/10.1126/science.aat6720.
Texte intégralShnaider, T. A. "Cerebral organoids: a promising model in cellular technologies." Vavilov Journal of Genetics and Breeding 22, no. 2 (2018): 168–78. http://dx.doi.org/10.18699/vj18.344.
Texte intégralLópez-Tobón, Alejandro, Carlo Emanuele Villa, Cristina Cheroni, et al. "Human Cortical Organoids Expose a Differential Function of GSK3 on Cortical Neurogenesis." Stem Cell Reports 13, no. 5 (2019): 847–61. http://dx.doi.org/10.1016/j.stemcr.2019.09.005.
Texte intégralHernández, Damián, Duncan E. Crombie, Helena H. Liang, et al. "MODELLING ALZHEIMER’S DISEASE USING HUMAN CORTICAL CEREBRAL ORGANOIDS." Alzheimer's & Dementia 13, no. 7 (2017): P1482—P1483. http://dx.doi.org/10.1016/j.jalz.2017.07.559.
Texte intégralPérez-Brangulí, Francesc, Isabel Y. Buchsbaum, Tatyana Pozner, et al. "Human SPG11 cerebral organoids reveal cortical neurogenesis impairment." Human Molecular Genetics 28, no. 6 (2018): 961–71. http://dx.doi.org/10.1093/hmg/ddy397.
Texte intégralYi, Sang Ah, Ki Hong Nam, Jihye Yun, et al. "Infection of Brain Organoids and 2D Cortical Neurons with SARS-CoV-2 Pseudovirus." Viruses 12, no. 9 (2020): 1004. http://dx.doi.org/10.3390/v12091004.
Texte intégralPrior, Victoria, Simon Maksour, Sara Miellet, et al. "BIOL-09. PROTEOMIC ANALYSES REVEAL THAT CO-CULTURE OF DIFFUSE INTRINSIC PONTINE GLIOME (DIPG) WITH CORTICAL ORGANOIDS ALTERS CELL ADHESION, DNA SYNTHESIS AND REPLICATION, AND DENDRITIC GROWTH SIGNALLING." Neuro-Oncology 25, Supplement_1 (2023): i7. http://dx.doi.org/10.1093/neuonc/noad073.028.
Texte intégralMa, Haihua, Juan Chen, Zhiyu Deng, et al. "Multiscale Analysis of Cellular Composition and Morphology in Intact Cerebral Organoids." Biology 11, no. 9 (2022): 1270. http://dx.doi.org/10.3390/biology11091270.
Texte intégralCho, Ann-Na, Fiona Bright, Nicolle Morey, Carol Au, Lars M. Ittner, and Yazi D. Ke. "Efficient Gene Expression in Human Stem Cell Derived-Cortical Organoids Using Adeno Associated Virus." Cells 11, no. 20 (2022): 3194. http://dx.doi.org/10.3390/cells11203194.
Texte intégralHale, Andrew T., Yuwei Song, and Zechen Chong. "268 Integrative Genomics Identifies Evolutionary, Temporal, and Cell-lineage Origin of Hydrocephalus Risk Gene." Neurosurgery 70, Supplement_1 (2024): 75. http://dx.doi.org/10.1227/neu.0000000000002809_268.
Texte intégralLim, Bitna, Yurika Matsui, Seunghyun Jung, et al. "Phosphorylation of the DNA damage repair factor 53BP1 by ATM kinase controls neurodevelopmental programs in cortical brain organoids." PLOS Biology 22, no. 9 (2024): e3002760. http://dx.doi.org/10.1371/journal.pbio.3002760.
Texte intégralNowakowski, Tomasz J., and Sofie R. Salama. "Cerebral Organoids as an Experimental Platform for Human Neurogenomics." Cells 11, no. 18 (2022): 2803. http://dx.doi.org/10.3390/cells11182803.
Texte intégralLi, Xiao-Hong, Di Guo, Li-Qun Chen, et al. "Low-intensity ultrasound ameliorates brain organoid integration and rescues microcephaly deficits." Brain, May 13, 2024. http://dx.doi.org/10.1093/brain/awae150.
Texte intégralBertucci, Taylor, Kathryn Bowles, Steven Lotz, et al. "Human iPSC derived organoid models to study tau pathology." Alzheimer's & Dementia 20, S6 (2024). https://doi.org/10.1002/alz.087353.
Texte intégralWilson, Madison N., Martin Thunemann, Xin Liu, et al. "Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-35536-3.
Texte intégralZourray, Clara, Manju A. Kurian, Serena Barral, and Gabriele Lignani. "Electrophysiological Properties of Human Cortical Organoids: Current State of the Art and Future Directions." Frontiers in Molecular Neuroscience 15 (February 16, 2022). http://dx.doi.org/10.3389/fnmol.2022.839366.
Texte intégralCadena, Melissa A., Anson Sing, Kylie Taylor, et al. "A 3D Bioprinted Cortical Organoid Platform for Modeling Human Brain Development." Advanced Healthcare Materials, May 30, 2024. http://dx.doi.org/10.1002/adhm.202401603.
Texte intégralZhang, Xiao-Shan, Gang Xie, Honghao Ma, et al. "Highly reproducible and cost-effective one-pot organoid differentiation using a novel platform based on PF-127 triggered spheroid assembly." Biofabrication, August 8, 2023. http://dx.doi.org/10.1088/1758-5090/acee21.
Texte intégralJalilian, Elmira, and Su Ryon Shin. "Novel model of cortical–meningeal organoid co-culture system improves human cortical brain organoid cytoarchitecture." Scientific Reports 13, no. 1 (2023). http://dx.doi.org/10.1038/s41598-023-35077-9.
Texte intégralBrown, Rebecca M., Pranav S. J. B. Rana, Hannah K. Jaeger, John M. O’Dowd, Onesmo B. Balemba, and Elizabeth A. Fortunato. "Human Cytomegalovirus Compromises Development of Cerebral Organoids." Journal of Virology 93, no. 17 (2019). http://dx.doi.org/10.1128/jvi.00957-19.
Texte intégralKong, Dasom, Ki Hoon Park, Da-Hyun Kim, et al. "Cortical-blood vessel assembloids exhibit Alzheimer’s disease phenotypes by activating glia after SARS-CoV-2 infection." Cell Death Discovery 9, no. 1 (2023). http://dx.doi.org/10.1038/s41420-022-01288-8.
Texte intégralHarbuzariu, Adriana, Sidney Pitts, Juan Carlos Cespedes, et al. "Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids." Scientific Reports 9, no. 1 (2019). http://dx.doi.org/10.1038/s41598-019-55631-8.
Texte intégralCho, Ann-Na, Yoonhee Jin, Yeonjoo An, et al. "Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-24775-5.
Texte intégral