Littérature scientifique sur le sujet « Data-Driven reduced order modeling »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Data-Driven reduced order modeling ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Data-Driven reduced order modeling"
Guo, Mengwu, et Jan S. Hesthaven. « Data-driven reduced order modeling for time-dependent problems ». Computer Methods in Applied Mechanics and Engineering 345 (mars 2019) : 75–99. http://dx.doi.org/10.1016/j.cma.2018.10.029.
Texte intégralXie, X., M. Mohebujjaman, L. G. Rebholz et T. Iliescu. « Data-Driven Filtered Reduced Order Modeling of Fluid Flows ». SIAM Journal on Scientific Computing 40, no 3 (janvier 2018) : B834—B857. http://dx.doi.org/10.1137/17m1145136.
Texte intégralIvagnes, Anna, Giovanni Stabile, Andrea Mola, Traian Iliescu et Gianluigi Rozza. « Hybrid data-driven closure strategies for reduced order modeling ». Applied Mathematics and Computation 448 (juillet 2023) : 127920. http://dx.doi.org/10.1016/j.amc.2023.127920.
Texte intégralBorcea, Liliana, Josselin Garnier, Alexander V. Mamonov et Jörn Zimmerling. « When Data Driven Reduced Order Modeling Meets Full Waveform Inversion ». SIAM Review 66, no 3 (mai 2024) : 501–32. http://dx.doi.org/10.1137/23m1552826.
Texte intégralPeters, Nicholas, Christopher Silva et John Ekaterinaris. « A data-driven reduced-order model for rotor optimization ». Wind Energy Science 8, no 7 (20 juillet 2023) : 1201–23. http://dx.doi.org/10.5194/wes-8-1201-2023.
Texte intégralZhang, Xinshuai, Tingwei Ji, Fangfang Xie, Changdong Zheng et Yao Zheng. « Data-driven nonlinear reduced-order modeling of unsteady fluid–structure interactions ». Physics of Fluids 34, no 5 (mai 2022) : 053608. http://dx.doi.org/10.1063/5.0090394.
Texte intégralBaumann, Henry, Alexander Schaum et Thomas Meurer. « Data-driven control-oriented reduced order modeling for open channel flows ». IFAC-PapersOnLine 55, no 26 (2022) : 193–99. http://dx.doi.org/10.1016/j.ifacol.2022.10.399.
Texte intégralGerman, Péter, Mauricio E. Tano, Carlo Fiorina et Jean C. Ragusa. « Data-Driven Reduced-Order Modeling of Convective Heat Transfer in Porous Media ». Fluids 6, no 8 (28 juillet 2021) : 266. http://dx.doi.org/10.3390/fluids6080266.
Texte intégralGruber, Anthony, Max Gunzburger, Lili Ju et Zhu Wang. « A comparison of neural network architectures for data-driven reduced-order modeling ». Computer Methods in Applied Mechanics and Engineering 393 (avril 2022) : 114764. http://dx.doi.org/10.1016/j.cma.2022.114764.
Texte intégralLi, Mengnan, et Lijian Jiang. « Data-driven reduced-order modeling for nonautonomous dynamical systems in multiscale media ». Journal of Computational Physics 474 (février 2023) : 111799. http://dx.doi.org/10.1016/j.jcp.2022.111799.
Texte intégralThèses sur le sujet "Data-Driven reduced order modeling"
Mou, Changhong. « Cross-Validation of Data-Driven Correction Reduced Order Modeling ». Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/87610.
Texte intégralM.S.
Practical engineering and scientific problems often require the repeated simulation of unsteady fluid flows. In these applications, the computational cost of high-fidelity full-order models can be prohibitively high. Reduced order models (ROMs) represent efficient alternatives to brute force computational approaches. In this thesis, we propose a data-driven correction ROM (DDC-ROM) in which available data and an optimization problem are used to model the nonlinear interactions between resolved and unresolved modes. In order to test the new DDC-ROM's predictability, we perform its cross-validation for the one-dimensional viscous Burgers equation and different training regimes.
Koc, Birgul. « Commutation Error in Reduced Order Modeling ». Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/87537.
Texte intégralM.S.
We propose reduced order models (ROMs) for an efficient and relatively accurate numerical simulation of nonlinear systems. We use the ROM projection and the ROM differential filters to construct a novel data-driven correction ROM (DDC-ROM). We show that the ROM spatial filtering and differentiation do not commute for the diffusion operator. Furthermore, we show that the resulting commutation error has an important effect on the ROM, especially for low viscosity values. As a mathematical model for our numerical study, we use the one-dimensional Burgers equations with smooth and non-smooth initial conditions.
Mou, Changhong. « Data-Driven Variational Multiscale Reduced Order Modeling of Turbulent Flows ». Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103895.
Texte intégralDoctor of Philosophy
Reduced order models (ROMs) are popular in physical and engineering applications: for example, ROMs are widely used in aircraft designing as it can greatly reduce computational cost for the aircraft's aeroelastic predictions while retaining good accuracy. However, for high Reynolds number turbulent flows, such as blood flows in arteries, oil transport in pipelines, and ocean currents, the standard ROMs may yield inaccurate results. In this dissertation, to improve ROM's accuracy for turbulent flows, we investigate three different types of ROMs. In this dissertation, both numerical and theoretical results show that the proposed new ROMs yield more accurate results than the standard ROM and thus can be more useful.
Swischuk, Renee C. (Renee Copland). « Physics-based machine learning and data-driven reduced-order modeling ». Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122682.
Texte intégralThesis: S.M., Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 123-128).
This thesis considers the task of learning efficient low-dimensional models for dynamical systems. To be effective in an engineering setting, these models must be predictive -- that is, they must yield reliable predictions for conditions outside the data used to train them. These models must also be able to make predictions that enforce physical constraints. Achieving these tasks is particularly challenging for the case of systems governed by partial differential equations, where generating data (either from high-fidelity simulations or from physical experiments) is expensive. We address this challenge by developing learning approaches that embed physical constraints. We propose two physics-based approaches for generating low-dimensional predictive models. The first leverages the proper orthogonal decomposition (POD) to represent high-dimensional simulation data with a low-dimensional physics-based parameterization in combination with machine learning methods to construct a map from model inputs to POD coefficients. A comparison of four machine learning methods is provided through an application of predicting flow around an airfoil. This framework also provides a way to enforce a number of linear constraints by modifying the data with a particular solution. The results help to highlight the importance of including physics knowledge when learning from small amounts of data. We also apply a data-driven approach to learning the operators of low-dimensional models. This method provides an avenue for constructing low-dimensional models of systems where the operators of discretized governing equations are unknown or too complex, while also having the ability to enforce physical constraints. The methodology is applied to a two-dimensional combustion problem, where discretized model operators are unavailable. The results show that the method is able to accurately make predictions and enforce important physical constraints.
by Renee C. Swischuk.
S.M.
S.M. Massachusetts Institute of Technology, Computation for Design and Optimization Program
Ali, Naseem Kamil. « Thermally (Un-) Stratified Wind Plants : Stochastic and Data-Driven Reduced Order Descriptions/Modeling ». PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4634.
Texte intégralXie, Xuping. « Large Eddy Simulation Reduced Order Models ». Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77626.
Texte intégralPh. D.
Bertram, Anna Verfasser], et Ralf [Akademischer Betreuer] [Zimmermann. « Data-driven variable-fidelity reduced order modeling for efficient vehicle shape optimization / Anna Bertram ; Betreuer : Ralf Zimmermann ». Braunschweig : Technische Universität Braunschweig, 2018. http://d-nb.info/1175392154/34.
Texte intégralBertram, Anna [Verfasser], et Ralf [Akademischer Betreuer] Zimmermann. « Data-driven variable-fidelity reduced order modeling for efficient vehicle shape optimization / Anna Bertram ; Betreuer : Ralf Zimmermann ». Braunschweig : Technische Universität Braunschweig, 2018. http://d-nb.info/1175392154/34.
Texte intégralD'Alessio, Giuseppe. « Data-driven models for reacting flows simulations : reduced-order modelling, chemistry acceleration and analysis of high-fidelity data ». Doctoral thesis, Universite Libre de Bruxelles, 2021. https://dipot.ulb.ac.be/dspace/bitstream/2013/328064/5/contratGA.pdf.
Texte intégralDoctorat en Sciences de l'ingénieur et technologie
This thesis is submitted to the Université Libre de Bruxelles (ULB) and to the Politecnico di Milano for the degree of philosophy doctor. This doctoral work has been performed at the Université Libre de Bruxelles, École polytechnique de Bruxelles, Aero-Thermo-Mechanics Laboratory, Bruxelles, Belgium with Professor Alessandro Parente and at the Politecnico di Milano, CRECK Modelling Lab, Department of Chemistry, Materials and Chemical Engineering, Milan, Italy with Professor Alberto Cuoci.
info:eu-repo/semantics/nonPublished
Ghosh, Rajat. « Transient reduced-order convective heat transfer modeling for a data center ». Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50380.
Texte intégralLivres sur le sujet "Data-Driven reduced order modeling"
Quarteroni, Alfio, et Gianluigi Rozza. Reduced Order Methods for Modeling and Computational Reduction. Springer London, Limited, 2014.
Trouver le texte intégralQuarteroni, Alfio, et Gianluigi Rozza. Reduced Order Methods for Modeling and Computational Reduction. Springer International Publishing AG, 2016.
Trouver le texte intégralReduced Order Methods for Modeling and Computational Reduction. Springer, 2014.
Trouver le texte intégralChapitres de livres sur le sujet "Data-Driven reduced order modeling"
Zdybał, K., M. R. Malik, A. Coussement, J. C. Sutherland et A. Parente. « Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches ». Dans Lecture Notes in Energy, 245–78. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-16248-0_9.
Texte intégralGrinberg, Leopold, Mingge Deng, George Em Karniadakis et Alexander Yakhot. « Window Proper Orthogonal Decomposition : Application to Continuum and Atomistic Data ». Dans Reduced Order Methods for Modeling and Computational Reduction, 275–303. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02090-7_10.
Texte intégralSamadiani, Emad. « Reduced Order Modeling Based Energy Efficient and Adaptable Design ». Dans Energy Efficient Thermal Management of Data Centers, 447–96. Boston, MA : Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-7124-1_10.
Texte intégralCangellaris, Andreas C., et Mustafa Celik. « Reduced-Order Electromagnetic Modeling for Design-Driven Simulations of Complex Integrated Electronic Systems ». Dans ICASE/LaRC Interdisciplinary Series in Science and Engineering, 126–54. Dordrecht : Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5584-7_6.
Texte intégralAumann, Quirin, Peter Benner, Jens Saak et Julia Vettermann. « Model Order Reduction Strategies for the Computation of Compact Machine Tool Models ». Dans Lecture Notes in Production Engineering, 132–45. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_10.
Texte intégralJaiman, Rajeev, Guojun Li et Amir Chizfahm. « Data-Driven Reduced Order Models ». Dans Mechanics of Flow-Induced Vibration, 433–77. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8578-2_8.
Texte intégralChen, Nan. « Data-Driven Low-Order Stochastic Models ». Dans Stochastic Methods for Modeling and Predicting Complex Dynamical Systems, 99–118. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22249-8_7.
Texte intégralMasoumi-Verki, Shahin, Fariborz Haghighat et Ursula Eicker. « Data-Driven Reduced-Order Model for Urban Airflow Prediction ». Dans Proceedings of the 5th International Conference on Building Energy and Environment, 3039–47. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9822-5_324.
Texte intégralLiu, Wing Kam, Zhengtao Gan et Mark Fleming. « Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models ». Dans Mechanistic Data Science for STEM Education and Applications, 131–70. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87832-0_5.
Texte intégralSledge, Isaac J., Liqian Peng et Kamran Mohseni. « An Empirical Reduced Modeling Approach for Mobile, Distributed Sensor Platform Networks ». Dans Dynamic Data-Driven Environmental Systems Science, 195–204. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25138-7_18.
Texte intégralActes de conférences sur le sujet "Data-Driven reduced order modeling"
Riva, Stefano, Sophie Deanesi, Carolina Introini, Stefano Lorenzi, Antonio Cammi et Lorenzo Loi. « Neutron Flux Reconstruction from Out-Core Sparse Measurements Using Data-Driven Reduced Order Modelling ». Dans International Conference on Physics of Reactors (PHYSOR 2024), 1632–41. Illinois : American Nuclear Society, 2024. http://dx.doi.org/10.13182/physor24-43444.
Texte intégralWang, Hong, Xipeng Guo, Chenn Zhou, Bill King et Judy Li. « Reduced Order Modeling via CFD Simulation Data for Inclusion Removal in Steel Refining Ladle ». Dans 2024 12th International Conference on Control, Mechatronics and Automation (ICCMA), 432–37. IEEE, 2024. https://doi.org/10.1109/iccma63715.2024.10843944.
Texte intégralXiao, Jian, Ning Liu, Jim Lua, Caleb Saathoff et Waruna p. Seneviratne. « Data-Driven and Reduced-Order Modeling of Composite Drilling ». Dans AIAA Scitech 2020 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-1859.
Texte intégralLiao, J., J. Spring et C. Worrell. « Data-Driven Safety Margin Management Using Reduced Order Modeling ». Dans Tranactions - 2019 Winter Meeting. AMNS, 2019. http://dx.doi.org/10.13182/t30732.
Texte intégralHines Chaves, D., et P. Bekemeyer. « Data-Driven Reduced Order Modeling for Aerodynamic Flow Predictions ». Dans 8th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2022. http://dx.doi.org/10.23967/eccomas.2022.077.
Texte intégralCarloni, Ana C., et João Luiz F. Azevedo. « Data-Driven Reduced-Order Modeling Techniques for Aeroelastic Analyses ». Dans AIAA SCITECH 2025 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2025. https://doi.org/10.2514/6.2025-0670.
Texte intégralFarcas, Ionut, Ramakanth Munipalli et Karen E. Willcox. « On filtering in non-intrusive data-driven reduced-order modeling ». Dans AIAA AVIATION 2022 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-3487.
Texte intégralNewton, Rachel, Zhe Du, Laura Balzano et Peter Seiler. « Manifold Optimization for Data Driven Reduced-Order Modeling* ». Dans 2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2023. http://dx.doi.org/10.1109/allerton58177.2023.10313500.
Texte intégralSimac, Joshua, Andrew Kaminsky, Jinhyuk Kim et Yi Wang. « Extending SHARPy to Support Data-Driven Aeroelastic Reduced-Order Modeling ». Dans AIAA SCITECH 2025 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2025. https://doi.org/10.2514/6.2025-0883.
Texte intégralKadeethum, Teeratorn, et Hongkyu Yoon. « Progressive reduced order modeling : a road to redemption for data-driven modeling. » Dans Proposed for presentation at the AGU Fall Meeting 2022 in ,. US DOE, 2022. http://dx.doi.org/10.2172/2006238.
Texte intégralRapports d'organisations sur le sujet "Data-Driven reduced order modeling"
Ali, Naseem. Thermally (Un-) Stratified Wind Plants : Stochastic and Data-Driven Reduced Order Descriptions/Modeling. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.6518.
Texte intégralParish, Eric. Multiscale modeling high-order methods and data-driven modeling. Office of Scientific and Technical Information (OSTI), octobre 2020. http://dx.doi.org/10.2172/1673827.
Texte intégralRusso, David, Daniel M. Tartakovsky et Shlomo P. Neuman. Development of Predictive Tools for Contaminant Transport through Variably-Saturated Heterogeneous Composite Porous Formations. United States Department of Agriculture, décembre 2012. http://dx.doi.org/10.32747/2012.7592658.bard.
Texte intégralHeitman, Joshua L., Alon Ben-Gal, Thomas J. Sauer, Nurit Agam et John Havlin. Separating Components of Evapotranspiration to Improve Efficiency in Vineyard Water Management. United States Department of Agriculture, mars 2014. http://dx.doi.org/10.32747/2014.7594386.bard.
Texte intégralTarko, Andrew P., Mario A. Romero, Vamsi Krishna Bandaru et Xueqian Shi. Guidelines for Evaluating Safety Using Traffic Encounters : Proactive Crash Estimation on Roadways with Conventional and Autonomous Vehicle Scenarios. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317587.
Texte intégralJalkanen, Jukka-Pekka, Erik Fridell, Jaakko Kukkonen, Jana Moldanova, Leonidas Ntziachristos, Achilleas Grigoriadis, Maria Moustaka et al. Environmental impacts of exhaust gas cleaning systems in the Baltic Sea, North Sea, and the Mediterranean Sea area. Finnish Meteorological Institute, 2024. http://dx.doi.org/10.35614/isbn.9789523361898.
Texte intégralWu, Yingjie, Selim Gunay et Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembre 2020. http://dx.doi.org/10.55461/ytgv8834.
Texte intégral