Articles de revues sur le sujet « Dataset shift »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Dataset shift ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Sharet, Nir, and Ilan Shimshoni. "Analyzing Data Changes using Mean Shift Clustering." International Journal of Pattern Recognition and Artificial Intelligence 30, no. 07 (2016): 1650016. http://dx.doi.org/10.1142/s0218001416500166.
Texte intégralAdams, Niall. "Dataset Shift in Machine Learning." Journal of the Royal Statistical Society: Series A (Statistics in Society) 173, no. 1 (2010): 274. http://dx.doi.org/10.1111/j.1467-985x.2009.00624_10.x.
Texte intégralGuo, Lin Lawrence, Stephen R. Pfohl, Jason Fries, et al. "Systematic Review of Approaches to Preserve Machine Learning Performance in the Presence of Temporal Dataset Shift in Clinical Medicine." Applied Clinical Informatics 12, no. 04 (2021): 808–15. http://dx.doi.org/10.1055/s-0041-1735184.
Texte intégralHe, Zhiqiang. "ECG Heartbeat Classification Under Dataset Shift." Journal of Intelligent Medicine and Healthcare 1, no. 2 (2022): 79–89. http://dx.doi.org/10.32604/jimh.2022.036624.
Texte intégralKim, Doyoung, Inwoong Lee, Dohyung Kim, and Sanghoon Lee. "Action Recognition Using Close-Up of Maximum Activation and ETRI-Activity3D LivingLab Dataset." Sensors 21, no. 20 (2021): 6774. http://dx.doi.org/10.3390/s21206774.
Texte intégralMcGaughey, Georgia, W. Patrick Walters, and Brian Goldman. "Understanding covariate shift in model performance." F1000Research 5 (April 7, 2016): 597. http://dx.doi.org/10.12688/f1000research.8317.1.
Texte intégralMcGaughey, Georgia, W. Patrick Walters, and Brian Goldman. "Understanding covariate shift in model performance." F1000Research 5 (June 17, 2016): 597. http://dx.doi.org/10.12688/f1000research.8317.2.
Texte intégralMcGaughey, Georgia, W. Patrick Walters, and Brian Goldman. "Understanding covariate shift in model performance." F1000Research 5 (October 17, 2016): 597. http://dx.doi.org/10.12688/f1000research.8317.3.
Texte intégralPrasad, Pulicherla Siva, and Senthilrajan Agniraj. "Cross-Domain Adaptation Techniques for Robust Plant Disease Detection: A DANN-CORAL Hybrid Approach." International Journal of Experimental Research and Review 42 (August 30, 2024): 68–84. http://dx.doi.org/10.52756/ijerr.2024.v42.007.
Texte intégralYu, Jiongchi, Xiaofei Xie, Qiang Hu, et al. "CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift." Proceedings of the ACM on Software Engineering 2, FSE (2025): 1687–709. https://doi.org/10.1145/3729346.
Texte intégralBecker, Aneta, and Jarosław Becker. "Dataset shift assessment measures in monitoring predictive models." Procedia Computer Science 192 (2021): 3391–402. http://dx.doi.org/10.1016/j.procs.2021.09.112.
Texte intégralFinlayson, Samuel G., Adarsh Subbaswamy, Karandeep Singh, et al. "The Clinician and Dataset Shift in Artificial Intelligence." New England Journal of Medicine 385, no. 3 (2021): 283–86. http://dx.doi.org/10.1056/nejmc2104626.
Texte intégralMoreno-Torres, Jose G., Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla, and Francisco Herrera. "A unifying view on dataset shift in classification." Pattern Recognition 45, no. 1 (2012): 521–30. http://dx.doi.org/10.1016/j.patcog.2011.06.019.
Texte intégralSubbaswamy, Adarsh, Bryant Chen, and Suchi Saria. "A unifying causal framework for analyzing dataset shift-stable learning algorithms." Journal of Causal Inference 10, no. 1 (2022): 64–89. http://dx.doi.org/10.1515/jci-2021-0042.
Texte intégralXie, Y., K. Schindler, J. Tian, and X. X. Zhu. "EXPLORING CROSS-CITY SEMANTIC SEGMENTATION OF ALS POINT CLOUDS." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2021 (June 28, 2021): 247–54. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2021-247-2021.
Texte intégralTasche, Dirk. "Factorizable Joint Shift in Multinomial Classification." Machine Learning and Knowledge Extraction 4, no. 3 (2022): 779–802. http://dx.doi.org/10.3390/make4030038.
Texte intégralChakraborty, Saptarshi, Debolina Paul, and Swagatam Das. "Automated Clustering of High-dimensional Data with a Feature Weighted Mean Shift Algorithm." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (2021): 6930–38. http://dx.doi.org/10.1609/aaai.v35i8.16854.
Texte intégralZHAO, YUZHONG, BABAK ALIPANAHI, SHUAI CHENG LI, and MING LI. "PROTEIN SECONDARY STRUCTURE PREDICTION USING NMR CHEMICAL SHIFT DATA." Journal of Bioinformatics and Computational Biology 08, no. 05 (2010): 867–84. http://dx.doi.org/10.1142/s0219720010004987.
Texte intégralStan, Serban, and Mohammad Rostami. "Preserving Fairness in AI under Domain Shift." Journal of Artificial Intelligence Research 81 (December 13, 2024): 907–34. https://doi.org/10.1613/jair.1.16694.
Texte intégralKIM, Geunhwan, Hwang YOUNGSANG, and Choo YOUNGMIN. "Enhancing adaptivity of active sonar classifier considering loss landscape under dataset shift." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, no. 9 (2024): 2098–103. http://dx.doi.org/10.3397/in_2024_3137.
Texte intégralXue, Zhiyun, Feng Yang, Sivaramakrishnan Rajaraman, Ghada Zamzmi, and Sameer Antani. "Cross Dataset Analysis of Domain Shift in CXR Lung Region Detection." Diagnostics 13, no. 6 (2023): 1068. http://dx.doi.org/10.3390/diagnostics13061068.
Texte intégralSáez, José A., and José L. Romero-Béjar. "Impact of Regressand Stratification in Dataset Shift Caused by Cross-Validation." Mathematics 10, no. 14 (2022): 2538. http://dx.doi.org/10.3390/math10142538.
Texte intégralChen, Heng, Erkang Zhao, Yunpeng Jia, and Lei Shi. "FSN: Feature Shift Network for Load-Domain (LD)Domain Generalization." Applied Sciences 14, no. 12 (2024): 5204. http://dx.doi.org/10.3390/app14125204.
Texte intégralAryal, Jagannath, and Bipul Neupane. "Multi-Scale Feature Map Aggregation and Supervised Domain Adaptation of Fully Convolutional Networks for Urban Building Footprint Extraction." Remote Sensing 15, no. 2 (2023): 488. http://dx.doi.org/10.3390/rs15020488.
Texte intégralBecker, Jarosław, and Aneta Becker. "Predictive Accuracy Index in evaluating the dataset shift (case study)." Procedia Computer Science 225 (2023): 3342–51. http://dx.doi.org/10.1016/j.procs.2023.10.328.
Texte intégralTurhan, Burak. "On the dataset shift problem in software engineering prediction models." Empirical Software Engineering 17, no. 1-2 (2011): 62–74. http://dx.doi.org/10.1007/s10664-011-9182-8.
Texte intégralPeng, Zhiyong, Changlin Han, Yadong Liu, and Zongtan Zhou. "Weighted Policy Constraints for Offline Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 9435–43. http://dx.doi.org/10.1609/aaai.v37i8.26130.
Texte intégralPhongsasiri, Siriwan, and Suwanna Rasmequan. "Outlier Detection in Wellness Data using Probabilistic Mapped Mean-Shift Algorithms." ECTI Transactions on Computer and Information Technology (ECTI-CIT) 15, no. 2 (2021): 258–66. http://dx.doi.org/10.37936/ecti-cit.2021152.244971.
Texte intégralTappy, Nicolas, Anna Fontcuberta i Morral, and Christian Monachon. "Image shift correction, noise analysis, and model fitting of (cathodo-)luminescence hyperspectral maps." Review of Scientific Instruments 93, no. 5 (2022): 053702. http://dx.doi.org/10.1063/5.0080486.
Texte intégralRodriguez-Vazquez, Javier, Miguel Fernandez-Cortizas, David Perez-Saura, Martin Molina, and Pascual Campoy. "Overcoming Domain Shift in Neural Networks for Accurate Plant Counting in Aerial Images." Remote Sensing 15, no. 6 (2023): 1700. http://dx.doi.org/10.3390/rs15061700.
Texte intégralHe, Yue, Xinwei Shen, Renzhe Xu, et al. "Covariate-Shift Generalization via Random Sample Weighting." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (2023): 11828–36. http://dx.doi.org/10.1609/aaai.v37i10.26396.
Texte intégralWang, Li, Dong Li, Han Liu, JinZhang Peng, Lu Tian, and Yi Shan. "Cross-Dataset Collaborative Learning for Semantic Segmentation in Autonomous Driving." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 3 (2022): 2487–94. http://dx.doi.org/10.1609/aaai.v36i3.20149.
Texte intégralHong, Zhiqing, Zelong Li, Shuxin Zhong, et al. "CrossHAR: Generalizing Cross-dataset Human Activity Recognition via Hierarchical Self-Supervised Pretraining." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 8, no. 2 (2024): 1–26. http://dx.doi.org/10.1145/3659597.
Texte intégralBock, Christoph, and Jürgen Hesser. "Analysis and Prediction of Helix Shift Errors in Homology Modeling." In Silico Biology: Journal of Biological Systems Modeling and Multi-Scale Simulation 6, no. 1-2 (2006): 131–45. https://doi.org/10.3233/isb-00228.
Texte intégralWei, Weiwei, Yuxuan Liao, Yufei Wang, et al. "Deep Learning-Based Method for Compound Identification in NMR Spectra of Mixtures." Molecules 27, no. 12 (2022): 3653. http://dx.doi.org/10.3390/molecules27123653.
Texte intégralBlanza, J., X. E. Cabasal, J. B. Cipriano, G. A. Guerrero, R. Y. Pescador, and E. V. Rivera. "Indoor Wireless Multipaths Outlier Detection and Clustering." Journal of Physics: Conference Series 2356, no. 1 (2022): 012037. http://dx.doi.org/10.1088/1742-6596/2356/1/012037.
Texte intégralKushol, Rafsanjany, Alan H. Wilman, Sanjay Kalra, and Yee-Hong Yang. "DSMRI: Domain Shift Analyzer for Multi-Center MRI Datasets." Diagnostics 13, no. 18 (2023): 2947. http://dx.doi.org/10.3390/diagnostics13182947.
Texte intégralGoel, Parth, and Amit Ganatra. "Unsupervised Domain Adaptation for Image Classification and Object Detection Using Guided Transfer Learning Approach and JS Divergence." Sensors 23, no. 9 (2023): 4436. http://dx.doi.org/10.3390/s23094436.
Texte intégralSinha, Samarth, Homanga Bharadhwaj, Anirudh Goyal, Hugo Larochelle, Animesh Garg, and Florian Shkurti. "DIBS: Diversity Inducing Information Bottleneck in Model Ensembles." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 11 (2021): 9666–74. http://dx.doi.org/10.1609/aaai.v35i11.17163.
Texte intégralHeffington, Colton, Brandon Beomseob Park, and Laron K. Williams. "The “Most Important Problem” Dataset (MIPD): a new dataset on American issue importance." Conflict Management and Peace Science 36, no. 3 (2017): 312–35. http://dx.doi.org/10.1177/0738894217691463.
Texte intégralGuo, Fumin, Matthew Ng, Maged Goubran, et al. "Improving cardiac MRI convolutional neural network segmentation on small training datasets and dataset shift: A continuous kernel cut approach." Medical Image Analysis 61 (April 2020): 101636. http://dx.doi.org/10.1016/j.media.2020.101636.
Texte intégralYuan, Wei, Lei Qiao, and Liu Tang. "Forest Wildfire Detection from Images Captured by Drones Using Window Transformer without Shift." Forests 15, no. 8 (2024): 1337. http://dx.doi.org/10.3390/f15081337.
Texte intégralVescovi, R. F. C., M. B. Cardoso, and E. X. Miqueles. "Radiography registration for mosaic tomography." Journal of Synchrotron Radiation 24, no. 3 (2017): 686–94. http://dx.doi.org/10.1107/s1600577517001953.
Texte intégralNgu, Noel, Aditya Taparia, Gerardo I. Simari, et al. "Multiple Distribution Shift - Aerial (MDS-A): A Dataset for Test-Time Error Detection and Model Adaptation." Proceedings of the AAAI Symposium Series 5, no. 1 (2025): 379–83. https://doi.org/10.1609/aaaiss.v5i1.35616.
Texte intégralHU, Xiaoyan, Yongqiang HAO, Guofeng DAI, Donghe ZHANG, and Zuo XIAO. "2020 ionospheric high frequency doppler shift dataset of Peking University Ionosphere Station." China Scientific Data 6, no. 2 (2021): 21.86101.1/csdata.2021.0021.zh. http://dx.doi.org/10.11922/csdata.2021.0021.zh.
Texte intégralTraynor, Carlos, Tarjinder Sahota, Helen Tomkinson, Ignacio Gonzalez-Garcia, Neil Evans, and Michael Chappell. "Imputing Biomarker Status from RWE Datasets—A Comparative Study." Journal of Personalized Medicine 11, no. 12 (2021): 1356. http://dx.doi.org/10.3390/jpm11121356.
Texte intégralBurns, Dan, Kathryn Richardson, and Corine Driessens. "A synthetic dataset for the exploration of survival and classification models: prediction of heart attack or stroke within a 10-year follow-up period." NIHR Open Research 4 (November 1, 2024): 67. http://dx.doi.org/10.3310/nihropenres.13651.1.
Texte intégralHuch, Sebastian, and Markus Lienkamp. "Towards Minimizing the LiDAR Sim-to-Real Domain Shift: Object-Level Local Domain Adaptation for 3D Point Clouds of Autonomous Vehicles." Sensors 23, no. 24 (2023): 9913. http://dx.doi.org/10.3390/s23249913.
Texte intégralWang, Xiaoyang, Chen Li, Jianqiao Zhao, and Dong Yu. "NaturalConv: A Chinese Dialogue Dataset Towards Multi-turn Topic-driven Conversation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 16 (2021): 14006–14. http://dx.doi.org/10.1609/aaai.v35i16.17649.
Texte intégralAllen, Robert C., Mattia C. Bertazzini, and Leander Heldring. "The Economic Origins of Government." American Economic Review 113, no. 10 (2023): 2507–45. http://dx.doi.org/10.1257/aer.20201919.
Texte intégral