Thèses sur le sujet « Dérive singulière »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 39 meilleures thèses pour votre recherche sur le sujet « Dérive singulière ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Haress, El Mehdi. « Numerical approximation and long-time behaviour of some singular stochastic (partial) differential equations ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM038.
Texte intégralIn this thesis, we explore the numerical approximation and long-term behavior of certain stochastic equations driven by dissipative and/or distributional drift terms.Firstly, stochastic differential equations (SDEs) with fractional Brownian motion (fBm) and distributional drift are studied. The convergence of a tamed-Euler scheme is quantified. Similar techniques are applied to the stochastic heat equation (SHE) with space-time white noise and a distributional reaction term, and the same results are obtained for a tamed-Euler scheme with finite differences.Secondly, the focus shifts to SDEs with fBm and dissipative drift, establishing, in the long-term regime, the almost-sure regularity of solutions and their ergodic means with respect to time and the Hurst parameter. These results are applied in a statistical context to estimate the parameters of the equations through an approximation of their invariant measures.Finally, we combine dissipative and distributional reaction terms in SHE, presenting preliminary results in the long-term regime, the well-posedness of the equation is proven and the moments of the solution are uniformly bounded over time
Popier, Alexandre François Roland. « Equations différentielles stochastiques rétrogrades avec condition finale singulière ». Aix-Marseille 1, 2004. http://www.theses.fr/2004AIX11037.
Texte intégralWang, Zhengfang. « Equivalence singulière à la Morita et la cohomologie de Hochschild singulière ». Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC203/document.
Texte intégralIn this thesis, we are concerned with some aspects of singular categories of unitalassociative k-algebras over a commutative ring k. First, we develop a Morita theory for singular categories. Analogous to the classical Morita theory, we propose a definition of singular equivalence of Morita type with level. This follows and generalizes a definition of stable equivalence of Morita type introduced by Michel Broué. A derived equivalence of standard type induces a singular equivalence of Morita type with level. Second, we study the Hom-space from A to A[i] in the singular category Dsg(AkAop) of the enveloping algebra AkAop, where A is an associative k-projective k-algebra and i is any integer. Recall that the i-th Hochschild cohomology group HHi(A,A) can be realized as the Hom-space from A to A[i] in the bounded derived category Db(A k Aop). From this motivation, we call HomDsg(AkAop)(A,A[i]) the i-th singular Hochschild cohomology group and denote this group by HHi sg(A,A). Analogous to the Hochschild cohomology ring HH_(A,A), we prove that there is a Gerstenhaber algebra structure on the singular Hochschild ring HH_sg(A,A) and provide an interpretation of the Lie bracket from the point of view of PROP theory. We also associate a cochain complex, which we call singular Hochschild cochain complex, C_sg(A,A) to the singular Hochschild cohomology. Thenwe study the higher algebraic structures (e.g. B1-algebra) on C_sg(A,A) and propose asingular version of the Deligne conjecture. Following Keller’s approach which was developed for derived equivalences, we establish the invariance of the Gerstenhaber algebra structure which we defined on the singular Hochschild cohomology under singular equivalence of Morita type with level. In this proof, we define the singular derived Picard group sgDPic(A) of an associative algebra A and develop what we call a singular infinitesimal deformation theory. Then we realize HH_sg(A,A) as the graded Lie algebra of the ‘graded algebraic group’ associated to sgDPic(A)
Ben-Kiran, Taoufiq. « Étude d'un problème de perturbation singulière elliptique non classique ». Nancy 1, 1989. http://www.theses.fr/1989NAN10040.
Texte intégralBounebache, Said Karim. « Équations aux dérivées partielles stochastiques avec un potentiel singulier ». Phd thesis, Paris 6, 2012. http://www.theses.fr/2012PA066149.
Texte intégralThis thesis deals with some topics linked with interface model, ours aim is to find solution of some SPDE of parabolic type with singular potential. Firstly We study the motion of a random string in a convex domain O in R^d, namely the solution of a vector-valued stochastic heat equation, confined in the closure of O and reflected at the boundary of O. We study the structure of the reflection measure by computing its Revuz measure in terms of an infinite dimensional integration by parts formula. We prove extistence and uniqueness of a continuous strong solution. Our method exploits recent results on weak convergence of Markov processes with log-concave invariantmeasures. Secondly We consider a stochastic heat equation driven by a space-time white noise and with a singular drift, where a local-time in space appears. The process we study has an explicit invariant measure of Gibbs type, with a non-convex potential. We obtain existence of a Markov solution, which is associated with an explicit Dirichlet form. Moreover we study approximations of the stationary solution by means of a regularization of the singular drift or by a finite-dimensional projection. Finaly, we extend the previous methods for a SPDE in which the two types of singularity appear
Martin, Ludovic. « Conception aérodynamique robuste ». Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1608/.
Texte intégralAerodynamic studies are often based on some numerical observations like the drag or lift coefficients. Consequently, it is fundamental to define tools and methodologies devoted to the reliable evaluation of these scalar observations. This master thesis will describe some strategies and methods in order to better control the computation of a scalar aerodynamic observation. Three classes of strategies have been considered. The evaluation strategy consists in determining the kind of evolution of the observation depending on parameters. In this context, the estimation of the first and especially second order sensibilities, obtained by automatic differentiation of industrial codes, allows us to know the local evolution (tangents and curvatures). The singular perturbation method is another and innovant method to determine the non-linear evolution of an aerodynamic observation without using the second order derivatives. The fiability strategy will try to increase the level of confidence in the numerical evaluation of the scalar aerodynamic observation. The uncertainty affecting some parameters that influence the scalar observation is taken into account in order to make the numerical evaluation more robust and reliable. Finally, the optimisation strategy consists in finding particular values of the aerodynamic observation which respects some constraints. The optimisation under uncertainty means that optimisation parameters are uncertain, that is to say constraints are statistical variables, like statistical moments or failure probabilities
Gürer, Serap. « Topologie algébrique des espaces difféologiques ». Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10033/document.
Texte intégralA diffeology on an arbitrary set X declares, for any integer n, which applications in R[exponent n] to X are smooth. This idea is structured by three natural axioms covering, locality and smooth compatibility. One objective of this thesis is to develop and study classical tools of algebraic topology in the diffeological framework. These tools are particularly looking at the generalized homology and cohomology theories. Another objective is to show that diffeological spaces offer a fairly natural frame to study the singular spaces : Thom-Mather stratified space. We set up the definitions of generalized (co)homology theories in the category Diff. We define a new notion of " CW- diffeology " linked to the notion of CW- complexes. P.Iglesias Zemmour introduced cubic homology and De Rham cohomology in the diffeological framework. We develop in addition the singular homology, cellular homology and diffeological de Rham cohomology. We study Thom-Mather stratified spaces which are singular spaces, with diffeology
Rebai, Yomna. « Construction de solutions singulières pour certaines équations aux dérivées partielles elliptiques semi-linéaires ». Cachan, Ecole normale supérieure, 1997. http://www.theses.fr/1997DENS0014.
Texte intégralFradon, Myriam. « Diffusions dégénerées, réfléchies ou a dérives singulières : Etude des lois et des formes de Dirichlet associées ». Paris 11, 1995. http://www.theses.fr/1995PA112204.
Texte intégralDuyckaerts, Thomas. « Etude haute fréquence de quelques problèmes d'évolution singuliers ». Paris 11, 2004. http://www.theses.fr/2004PA112321.
Texte intégralIn this work we study linear partial differential evolution equations from a micro-local point of view. Two types of equations appear. The first chapter is devoted to the decay of solutions of the linear equation of magneto-elasticity, which describes the displacement of a tridimensional, bounded, simply-connected solid in a constant exterior magnetic field. We first give a necessary and sufficient condition of uniform stability for finite energy solutions of the system. The condition involves the geometry of the domain and the direction of the magnetic field. When this condition is not satisfied, we show that solutions with smooth initial data decay at least polynomially. The proofs of the two results are based on the study of observability inequalities on the Lamé system, using propagation arguments on micro-local defect measures for high frequency solutions of the Lamé system. In chapter 2 and 3, we consider a Laplace operator P with a potential in the euclidian space and the related wave and Schrödinger equations. The real potential V, small at infinity, is bounded outside a finite number of poles, where it takes infinite values. The critical singularities are in inverse square of the distance to a given pole. In order to extend previous results on evolution equations for the one-pole operator (easier because some explicit calculations are possible), we show the usual non-trapping high frequency inequality on the resolvent of P. This inequality implies the well known local smoothing effect with gain of one half derivative on the Schrödinger equation. The proof is also based on the use of a micro-local defect measure, but in a semi-classical context. The third chapter emphasizes the critical nature of inverse square singularities. An example of an unipolar potential is given, of the order of an inverse square up to a logarithm correction, for which high frequency inequalities on the resolvent of P fail. Furthermore, some solutions of the corresponding wave and Schrödinger equations are shown to contradict all the standard dispersive estimates that hold for the free equations
Léautaud, Matthieu. « Quelques problèmes de contrôle d'équations aux dérivées partielles : inégalités spectrales, systèmes couplés et limites singulières ». Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00607240.
Texte intégralGrillot-Mousny, Michèle. « Sur la construction de solutions d'équations elliptiques non linéaires singulières sur une sous-variété ». Tours, 1996. http://www.theses.fr/1996TOUR4003.
Texte intégralMotron, Mélissa. « Extrémales pour certaines inégalités de Sobolev singulières et critiques : Approximation numérique d'ensembles propres pour le 1-Laplacien ». Cergy-Pontoise, 2002. http://www.theses.fr/2002CERG0176.
Texte intégralThis thesis is divided in three distinct parts. The first one is concerned with variational problems involving the 1-Laplacian : an article is devoted to the best constants and extremals for the Sobolev trace map from W1,1(?) into L1(??), and a second work is about the first eigenvalue for the 1-Laplacian. The second part gives existence results for nonlinear PDEs of fourth order. The third part presents a method to prove the existence of a solution to problems involving the p-Laplacian with a Neuman condition on the boundary
Smoch, Laurent. « Application des méthodes de Krylov à la résolution de systèmes singuliers ». Littoral, 1999. http://www.theses.fr/1999DUNK0029.
Texte intégralIn this thesis we study the Krylov subspace methods applied to the solution of consistent singular systems. The methods in use today which are Galerkin methods or minimal residual seminorm methods, built help to the Hessenberg generalized process, call in some new results about the determination of a Krylov solution. We show first, that in exact arithmetic or in finite precision, the determination of a Krylov solution depends on the initial vector used in the method and more precisely, on its decomposition on the characteristics subspaces associated to the matrix of the studied system. Some precision are also given about the breakdowns occurring in the GMRES method and on its restarted version. Some new considerations are brought about the numerical treatment of some nonlinear partial differential equations depending on a parameter. In some cases, they call in singular systems whose matrix admits some Jordan blocks associated to the zero eigenvalue of maximal size 1, which is a sufficient condition to obtain a Krylov solution. All these practical examples and their numerical treatment prove therefore that there exists alternatives to the breakdowns occurring in the algorithms
Saoudi, Kamel. « Etude de quelques problèmes quasilinéaires elliptiques singuliers ». Toulouse 1, 2009. https://tel.archives-ouvertes.fr/tel-00412365v2.
Texte intégralThis thesis concerns the study od some singular elliptic problems. Precisely, in Chapter 2, we investigate the question of multiplicity of solutions for a singular problem with critical growth in dimension N = 3. In Chapter 3, we investigate the validity of C1 versus W0 1;p energy minimisers for a quasilinear elliptic singular problem. In Chapter 4, we present global bifurcation results for a semilinear elliptic singular problem with critical growth in dimension 2 with exponentiel growth
Diop, Awa. « Sur la discrétisation et le comportement à petit bruit d'EDS unidimensionnelles dont les coefficients sont à dérivées singulières ». Nice, 2003. http://www.theses.fr/2003NICE4069.
Texte intégralThe first part of this thesis is devoted to the approximation of one-dimensional stochastic differential equations (SDE) with non Lipschitz coefficients. More precisely, we consider two classes of equations which are often used in finance. We first consider a generalization of Cox-Ingersoll-Ross and Hull & White models ; the drift coefficient has bounded derivatives whereas the diffusion coefficient is of type σ (x) = xα, with ½ ≤ α < 1. We then consider a SDE solved by a Bessel process ; the drift coefficient is of type C on α, with C > 0 and thus presents a singularity at zero. Under our assumptions, one has existence and uniqueness of solution with almost surely strictly positive trajectories. For these two SDE’s we propose a discretization schemes which preserve the positivity of the approximated processes. On one hand we obtain the convergence rate in the weak sense when the test functions are smooth. On the other hand, we analyze the convergence rate in the strong sense in the case where the diffusion coefficient is of type σ (x) = xα. In the second part of this thesis, we consider the problem of the asymptotic behaviour of the solution of a parabolic partial differential equation (PDE) with discontinuous first order coefficient when the viscosity goes to zero. Under a monotonicity assumption on the first order coefficient, we show that the solution converges weakly towards the “measure solution” of the corresponding transport equation
Morancey, Morgan. « Contrôle d'équations de Schrödinger et d'équations paraboliques dégénérées singulières ». Phd thesis, Ecole Polytechnique X, 2013. http://tel.archives-ouvertes.fr/tel-00910985.
Texte intégralBarles, Guy. « Contribution à la théorie des solutions de viscosité des équations de Hamilton-Jacobi du premier ordre et applications à des problèmes de contrôle optimal et de perturbations singulières ». Paris 9, 1988. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1988PA090004.
Texte intégralBougherara, Brahim. « Problèmes non-linéaires singuliers et bifurcation ». Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3012/document.
Texte intégralThis thesis is concerned with the mathematical study of nonlinear partial differential equations. Precisely, we have investigated a class of nonlinear elliptic and parabolic problems with singular coefficients. This lack of regularity involves some difficulties which prevent the straight-orward application of classical methods of nonlinear analysis based on compactness results. In the proofs of the main results, we show how to overcome these difficulties. Precisely we adapt some well-known techniques together with the use of new methods. In this framework, an important step is to estimate accurately the solutions in order to apply the weak comparison principle, to use the regularity theory of parabolic and elliptic equations and to develop in a new context the analytic theory of global bifurcation. The thesis presents two independent parts. 1- In the first part (corresponding to Chapter I), we are interested by a nonlinear and singular parabolic equation involving the p-Laplacian operator. We established for this problem that for any non-negative initial datum chosen in a certain Lebeque space, there exists a local positive weak solution. For that we use some a priori bounds based on logarithmic Sobolev inequalities to get ultracontractivity of the associated semi-group. Additionaly, for a range of values of the singular coefficient, we prove the uniqueness of the solution and further regularity results. 2- In the second part (corresponding to Chapters II, III and IV of the thesis), we are concerned with the study of global bifurcation problems involving singular nonlinearities. We establish the existence of a piecewise analytic global path of solutions to these problems. For that we use crucially the analytic bifurcation theory introduced by Dancer (described in Chapter II of the thesis). In the frame of a class of semilinear elliptic problems involving a critical nonlinearity in two dimensions, we further prove that the piecewise analytic path of solutions admits asymptotically a singular solution (i.e. an unbounded solution), whose Morse index is infinite. As a consequence, this path admits a countable infinitely many “turning points” where the Morse index is increasing
Aibeche, Aïssa. « Quelques problèmes non linéaires dans des domaines à frontière polygonale, comportement singulier de la solution ». Nice, 1985. http://www.theses.fr/1985NICE4052.
Texte intégralBuffe, Rémi. « Inégalités de Carleman près du bord, d’une interface et pour des problèmes singuliers ». Thesis, Orléans, 2017. http://www.theses.fr/2017ORLE2059/document.
Texte intégralIn the first part of this thesis, we derive elliptic Carleman estimates for second-order operators with Ventcel boundary conditions. In the second part, we prove a proper estimate near multi-interfaces for elliptic operatorsof any order, under the classical sub-ellipticity condition of Hörmander and under a compatibility condition between the operators in the interior and at the multi-interface, called the covering condition. This condition is a generalization of the well-known Lopatinskii condition. Finally, in the third part, we focus on controllability properties of the heat equation, and stabilization properties of the wave equation for polygonal domains, with mixed boundary conditions
Merlet, Benoît. « Sur quelques équations aux dérivées partielles et leur analyse numérique ». Paris 11, 2004. http://www.theses.fr/2004PA112162.
Texte intégralIn this thesis, four Partial Differential Equations of different nature are studied, numerically or/and theoretically. The first part deals with non-conservative hyperbolic systems in one space dimension. In the case of non-conservative hyperbolic systems, several definitions of shock waves exist in the literature, in this paper, we propose and study a new, very simple one in the case of genuinely non-linear fields. The second part is concerned with the Harmonic Map flow. We build solutions to the harmonic map flow from the unit disk into the unit sphere which have constant degree, in a co-rotational symmetric frame. First we prove the existence of such solutions, using a time semi-discrete scheme then we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularities. The third part deals with the initial-and-boundary value problem for the Kadomtse-Petviashvili II equation posed on a strip with a Dirichlet left boundary condition and two kinds of conditions on the right boundary. Moreover we treat the case of the half plane and we show a result of convergence. In the last part, we investigate by numerical means a conjecture proposed by Guy David about the existence of a new Global Minimizer for the Mumford-Shah Functional in R^3. We are led to study a spectral problem for the Laplace operator with Neumann boundary conditions on a two dimensional subdomain of the sphere S^2 with reentrant corners. In particular, we have to compute the first eigenvector of this operator and accurate approximations of the singular coefficients of this eigenvector at each corner. For that we use the Singular Complement Method
Prandi, Dario. « Géométrie et analyse des systèmes de commande avec dérive : planification des mouvements, évolution de la chaleur et de Schrödinger ». Phd thesis, Ecole Polytechnique X, 2013. http://pastel.archives-ouvertes.fr/pastel-00878567.
Texte intégralRainero, Sophie. « Sur les propriétés des solutions d'équations différentielles stochastiques rétrogrades à horizon aléatoire ou déterministe. Principes de grandes déviations et applications à des problèmes de perturbations singulières pour des équations aux dérivées partielles non linéaires ». Paris 9, 2006. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2006PA090008.
Texte intégralWe prove large deviations principles for solutions of forward-backward stochastic differential equations with determinist terminal time, and we give an application of these results to the theory of credit risk management. We also study the existence, uniqueness and stability of solutions of backward stochastic differential equations with random terminal time under new assumptions. We establish large deviations principles for the solutions of such equations, related to a family of Markov processes, the diffusion coefficient of which tends to zero. We deduce from these results some theorems of convergence of solutions of non linear partial differential equations, elliptic and parabolic, which extend Freidlin and Wentzell's
Prandi, Dario. « Geometry and analysis of control-affine systems : motion planning, heat and Schrödinger evolution ». Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/87/85/67/PDF/main.pdf.
Texte intégralThis thesis is dedicated to two problems arising from geometric control theory, regarding control-affine systems \dot q= f_0(q)+\sum_{j=1}^m u_j f_j(q), where f_0 is called the drift. In the first part we extend the concept of complexity of non-admissible trajectories, well understood for sub-Riemannian systems, to this more general case, and find asymptotic estimates. Then, in the second part of the thesis, we consider a family of 2-dimensional driftless control systems. For these, we study how the set where the control vector fields become collinear affects the evolution of the heat and of a quantum particle with respect to the associated Laplace-Beltrami operator
Neji, Ali. « Existence unicité et régularité de solutions de problèmes non linéaires et complètement non linéaires elliptiques singuliers ». Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1017.
Texte intégralWe studied in this thesis the properties of existence and regularity for various nonlinear partial differential equations of elliptic type. We proved the existence of weak solutions to certain problems involving the p-Laplacian operator using critical point theory and the mountain pass theorem . We have also showed the existence of viscosity solutions for singular equations involving fully nonlinear operators
El, Amri Hassan. « Analyse numérique et résultats d'existence pour quelques modèles de problèmes physiques : vibrations d'une barre mince sous contraintes, écoulements quasi-newtoniens, écoulements en milieux poreux ». Lyon 1, 1990. http://www.theses.fr/1990LYO10006.
Texte intégralGérard, Christian. « Propagation de la polarisation pour des problèmes aux limites ». Paris 11, 1986. http://www.theses.fr/1986PA112261.
Texte intégralMokrani, Houda. « Étude d'une classe d'équations aux dérivées partielles semi-linéaires sur le groupe de Heisenberg ». Phd thesis, Université de Rouen, 2009. http://tel.archives-ouvertes.fr/tel-00461835.
Texte intégralLaurain, Antoine. « Domaines singulierements perturbes en optimisation de formes ». Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00139595.
Texte intégralcas de domaines à frontière régulière et pour des perturbations régulières de ces domaines.
Par contre, l'étude de domaines non-réguliers, tels que des domaines fissurés par exemple,
et l'étude de perturbations singulières telles que la création d'un trou dans un domaine est
plus récente et plus complexe. Ce nouveau domaine de recherche est motivé par de multiples
applications, car en pratique, les hypothèses de régularité ne sont pas toujours vérifiées. Les
outils tels que la dérivée topologique permettent d'appréhender ces perturbations singulières
de domaines et leur utilisation est maintenant fréquente.
Dans la première partie, nous étudions la structure de la dérivée de forme pour des domaines fissurés. Dans le cas d'un ouvert régulier, de classe C1 ou lipschitzien par exemple,
la dérivée dépend uniquement des perturbations de la frontière du domaine en direction de
la normale. Ce théorème de structure n'est plus valable pour des domaines contenant des
fissures. On généralise ici ce théorème de structure aux domaines fissurés en dimension quelconque pour les dérivées premières et secondes. En dimension deux, on retrouve le résultat
usuel, à savoir qu'en plus du terme classique, deux nouvelles contributions apparaissent dûes
aux extrémités de la fissure. En dimension supérieure, un nouveau terme apparaît en plus du
terme classique, dû à la frontière de la variété à bord représentant la fissure.
Dans la deuxième partie, nous étudions la perturbation singulière d'un domaine et nous
modélisons cette perturbation à l'aide d'extensions auto-adjointes d'opérateurs. Nous décrivons cette modélisation, puis nous montrons comment elle peut être utilisée pour un problème
d'optimisation de forme. En définissant une fonctionnelle d'énergie approchée pour ce problème modèle, on retrouve notamment la formule de la dérivée topologique usuelle.
Dans la troisième partie, on propose une application numérique de la dérivée topologique
et de la dérivée de forme pour un problème non-linéaire. On cherche à maximiser l'énergie
associée à la solution d'un problème de Signorini dans un domaine . L'évolution du domaine
est représentée à l'aide d'une méthode levelset.
Mellet, Antoine. « Etude asymptotique des équations cinétiques : applications à la modélisation des phénomènes de transport ». Toulouse 3, 2002. http://www.theses.fr/2002TOU30192.
Texte intégralBonnaillie-Noël, Virginie. « Analyse asymptotique, spectrale et numérique pour quelques problèmes elliptiques issus de la physique ou de la mécanique ». Habilitation à diriger des recherches, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00650033.
Texte intégralBaudouin, Lucie. « Contributions à l'étude de l'équation de Schrödinger : problème inverse en domaine borné et contrôle optimal bilinéaire d'une équation de Hartree-Fock ». Phd thesis, Université de Versailles-Saint Quentin en Yvelines, 2004. http://tel.archives-ouvertes.fr/tel-00007684.
Texte intégralYang, Jie. « Solving Partial Differential Equations by Taylor Meshless Method ». Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0032/document.
Texte intégralBased on Taylor Meshless Method (TMM), the aim of this thesis is to develop a simple, robust, efficient and accurate numerical method which is capable of solving large scale engineering problems and to provide a new idea for the follow-up study on meshless methods. To this end, the influence of the key factors in TMM has been studied by solving three-dimensional and non-linear Partial Differential Equations (PDEs). The main idea of TMM is to use high order polynomials as shape functions which are approximated solutions of the PDE and the discretization concerns only the boundary. To solve the unknown coefficients, boundary conditions are accounted by collocation procedures associated with least-square method. TMM that needs only boundary collocation without integration process, is a true meshless method. The main contributions of this thesis are as following: 1) Based on TMM, a general and efficient algorithm has been developed for solving three-dimensional PDEs; 2) Three coupling techniques in piecewise resolutions have been discussed and tested in cases of large-scale problems, including least-square collocation method and two coupling methods based on Lagrange multipliers; 3) A general numerical method for solving non-linear PDEs has been proposed by combining Newton Method, TMM and Automatic Differentiation technique; 4) To apply TMM for solving problems with singularities, the singular solutions satisfying the control equation are introduced as complementary shape functions, which provides a theoretical basis for solving singular problems
Cambon, Sebastien. « Méthode d'éléments finis d'ordre élevé et d'équations intégrales pour la résolution de problème de furtivité radar d'objets à symétrie de révolution ». Thesis, Toulouse, INSA, 2012. http://www.theses.fr/2012ISAT0047/document.
Texte intégralIn this thesis, we are interested in modeling diffraction of electromagnetic waves by axisymmetric and highly heterogeneous objects. Our method consists in a coupling between partial differential equations and integral equations. This idea is mainly interesting for two reasons : heterogeneities are handled naturally in the formulation and integral equations give an analytical representation of solutions outside the object based on surface currents.These advantages allow us to limit the domain of simulation to the object itself. In addition,using Fourier series combined with the rotational invariance property of the object, the 3D problem is reduced to a countable set of 2D problems. The study of these problems is split into several parts. Each part has to deal with aspecific problem as for example the numerical integration of singular integrals which is difficult to achieve. As a first step, we study time-harmonic Maxwell’s equations in a bounded domain for which we develop a new high-order finite element method and present its efficiency and accuracy on many examples. Secondly, we consider the diffraction of plane waves by perfect electric conductors to analyse integral equations for these kind of object.The boundary finite element method applied is defined by extension of the previous one via tangential trace operator. Then, we solve the coupled problem using a well chosen formulation based on the previous studies for which our finite element method is naturally adapted by construction. In order to evaluate its efficiency, a comparison is performed between our program « AxiMax » and one based on a purely 3D model. To conclude, in the last two chapters, we present the numerical integration method and the multi-processing algorithm developed in AxiMax. In all cases, we put forward the fact that our finite element method provides accurate results depending on the quality of the simulation parameters
Hsu, Yueh-Sheng. « On the random Schrödinger operators in the continuous setting ». Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD009.
Texte intégralThis thesis studies the random Schrödinger operators in continuous setting, particularly those with Gaussian white noise potential. The definition of such differential operators is generally non-trivial and necessitates renormalization in dimensions d ≥ 2. We first present a general framework to translate the problem of operator construction into stochastic PDEs. This approach enables us to define the operator at stake and establishes its self-adjointness, as well as to investigate its spectrum.Subsequently, we proceed to study the continuous Anderson Hamiltonian under two distinct spatial settings: first on a bounded box with side length L with zero Dirichlet boundary condition for dimensions d ≤ 3, and second on the full Euclidean space Rd, for d ∈ {2, 3}. In the former case, the operator admits eigenvalues λn,L, for which we identify the almost sure asymptotic as L → ∞. This asymptotic aligns with previous findings in the literature for dimension 1 and 2, while our result in dimension 3 is new. In the latter case, we propose a new construction technique employing the solution theory to the associated parabolic equation which allows to prove self-adjointness and show that the spectrum equals to R almost surely. This approach reconfirms the recently established result in dimension 2, but our construction seems to be more elementary; for dimension 3, our result is new.Lastly, we present an ongoing project addressing the case where a uniform magnetic field is applied to the system : this leads to the study of Landau Hamiltonian perturbed by the white noise potential. Our objective is to define the operator on full space R² without resorting to sophisticated renormalization theory. However, the unboundedness of white noise on R² poses additional technical challenges. To overcome this, the usage of Faris-Lavine theorem is discussed
Peillon, Etienne. « Simulation and analysis of sign-changing Maxwell’s equations in cold plasma ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE004.
Texte intégralNowadays, plasmas are mainly used for industrial purpose. One of the most frequently cited examples of industrial use is electric energy production via fusion nuclear reactors. Then, in order to contain plasma properly inside the reactor, a background magnetic field is imposed, and the density and temperature of the plasma must be precisely controlled. This is done by sending electromagnetic waves at specific frequencies and directions depending on the characteristics of the plasma.The first part of this PhD thesis consists in the study of the model of plasma in a strong background magnetic field, which corresponds to a hyperbolic metamaterial. The objective is to extend the existing results in 2D to the 3D-case and to derive a radiation condition. We introduce a splitting of the electric and magnetic fields resembling the usual TE and TM decomposition, then, it gives some results on the two resulting problems. The results are in a very partial state, and constitute a rough draft on the subject.The second part consists in the study of the degenerate PDE associated to the lower-hybrid resonant waves in plasma. The associated boundary-value problem is well-posed within a ``natural'' variational framework. However, this framework does not include the singular behavior presented by the physical solutions obtained via the limiting absorption principle. Notice that this singular behavior is important from the physical point of view since it induces the plasma heating mentioned before. One of the key results of this second part is the definition of a notion of weak jump through the interface inside the domain, which allows to characterize the decomposition of the limiting absorption solution into a regular and a singular parts
Sauvy, Paul. « Étude de quelques problèmes elliptiques et paraboliques quasi-linéaires avec singularités ». Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3020/document.
Texte intégralThis thesis deals with the mathematical field of nonlinear partial differential equations analysis. More precisely, we focus on quasilinear and singular problems. By singularity, we mean that the problems that we have considered involve a nonlinearity in the equation which blows-up near the boundary. This singular pattern gives rise to a lack of regularity and compactness that prevent the straightforward applications of classical methods in nonlinear analysis used for proving existence of solutions and for establishing the regularity properties and the asymptotic behavior of the solutions. To overcome this difficulty, we establish estimations on the precise behavior of the solutions near the boundary combining several techniques : monotonicity method (related to the maximum principle), variational method, convexity arguments, fixed point methods and semi-discretization in time. Throughout the study of three problems involving the p-Laplacian operator, we show how to apply this different methods. The three chapters of this dissertation the describes results we get :– In Chapter I, we study a singular elliptic absorption problem. By using sub- and super-solutions and variational methods, we prove the existence of the solutions. In the case of a strong singularity, by using local comparison techniques, we also prove that the compact support of the solution. In Chapter II, we study a singular elliptic system. By using fixed point and monotonicity arguments, we establish two general theorems on the existence of solution. In a second time, we more precisely analyse the Gierer-Meinhardt systems which model some biological phenomena. We prove some results about the uniqueness and the precise behavior of the solutions. In Chapter III, we study a singular parabolic absorption problem. By using a semi-discretization in time method, we establish the existence of a solution. Moreover, by using differential energy inequalities, we prove that the solution vanishes in finite time. This phenomenon is called "quenching"
Wehbe, Charbel. « Étude asymptotique de modèles en transition de phase ». Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2311/document.
Texte intégralThis thesis report is devoted to the study of Caginalp type phase-field Models. Here, we consider two parts : the first is a generalization of the Caginalp type phase-field model based on a generalization of the Maxwell-Cattaneo law and the second with the same model in its conservative version. The study in the two parts is made in a bounded domain. In addition, in the first part we distinguish cases of boundary conditions of Dirichlet and Neumann, while in the second part the model is studied only with Dirichlet conditions (with a regular potential and a singular potential). First, the existence, uniqueness, and regularity of solutions are analyzed by means of classical arguments. Then, the existence of bounded absorbing sets is established. Finally, in some cases, the existence of the global attractor and exponential attractors are analyzed