Littérature scientifique sur le sujet « Diapirs South Australia Flinders Ranges »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Diapirs South Australia Flinders Ranges ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Diapirs South Australia Flinders Ranges"
Reilly, M. R. W., et S. C. Lang. « A PONDED BASIN FLOOR FAN OUTCROP ANALOGUE : BUNKERS SANDSTONE, NORTHERN FLINDERS RANGES, AUSTRALIA ». APPEA Journal 43, no 1 (2003) : 537. http://dx.doi.org/10.1071/aj02028.
Texte intégralBacké, Guillaume, Graham Baines, David Giles, Wolfgang Preiss et Andrew Alesci. « Basin geometry and salt diapirs in the Flinders Ranges, South Australia : Insights gained from geologically-constrained modelling of potential field data ». Marine and Petroleum Geology 27, no 3 (mars 2010) : 650–65. http://dx.doi.org/10.1016/j.marpetgeo.2009.09.001.
Texte intégralFernandes, Blaise I. L., Kathryn J. Amos, Tobias H. D. Payenberg et Simon Lang. « An outcrop analogue for deepwater salt withdrawal mini-basins : lateral and vertical variations in basin-fill ». APPEA Journal 58, no 2 (2018) : 809. http://dx.doi.org/10.1071/aj17200.
Texte intégralVidal‐Royo, Oskar, Mark G. Rowan, Oriol Ferrer, Mark P. Fischer, J. Carl Fiduk, David P. Canova, Thomas E. Hearon et Katherine A. Giles. « The transition from salt diapir to weld and thrust : Examples from the Northern Flinders Ranges in South Australia ». Basin Research 33, no 5 (23 juin 2021) : 2675–705. http://dx.doi.org/10.1111/bre.12579.
Texte intégralSnow, Michael R., Allan Pring et Nicole Allen. « Minerals of the Wooltana Cave, Flinders Ranges, South Australia ». Transactions of the Royal Society of South Australia 138, no 2 (janvier 2014) : 214–30. http://dx.doi.org/10.1080/03721426.2014.11649009.
Texte intégralGroves, I. M., C. E. Carman et W. J. Dunlap. « Geology of the Beltana Willemite Deposit, Flinders Ranges, South Australia ». Economic Geology 98, no 4 (1 juin 2003) : 797–818. http://dx.doi.org/10.2113/gsecongeo.98.4.797.
Texte intégralLemon, N. M. « A Neoproterozoic fringing stromatolite reef complex, Flinders Ranges, South Australia ». Precambrian Research 100, no 1-3 (mars 2000) : 109–20. http://dx.doi.org/10.1016/s0301-9268(99)00071-6.
Texte intégralWalshe, Keryn. « Aboriginal occupation at Hawker Lagoon, southern Flinders Ranges, South Australia ». Australian Archaeology 60, no 1 (janvier 2005) : 24–33. http://dx.doi.org/10.1080/03122417.2005.11681801.
Texte intégralWoon, E., et M. W. Wallace. « Petrogenesis of Neoproterozoic Allochthonous Reef Carbonates, Flinders Ranges, South Australia ». ASEG Extended Abstracts 2006, no 1 (décembre 2006) : 1–4. http://dx.doi.org/10.1071/aseg2006ab198.
Texte intégralJago, J. B., J. G. Gehling, M. J. Betts, G. A. Brock, C. R. Dalgarno, D. C. García-Bellido, P. G. Haslett et al. « The Cambrian System in the Arrowie Basin, Flinders Ranges, South Australia ». Australian Journal of Earth Sciences 67, no 7 (11 décembre 2018) : 923–48. http://dx.doi.org/10.1080/08120099.2018.1525431.
Texte intégralThèses sur le sujet "Diapirs South Australia Flinders Ranges"
Mendis, Premalal J. « The origin of the geological structures, diapirs, grabens, and barite veins in the Flinders Ranges, South Australia ». Title page, abstract and contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phm5389.pdf.
Texte intégralCooper, Andrew McGregor. « Late Proterozoic hydrocarbon potential and its association with diapirism in Blinman #2, Central Flinders Ranges, South Australia / ». Title page, abstract and contents only, 1991. http://web4.library.adelaide.edu.au/theses/09SB/09sbc776.pdf.
Texte intégral"National grid reference 1:250 000 - Parachilna SH54-13." Includes bibliographical references (leaves 45-47).
Hearon, IV Thomas E. « Analysis of salt-sediment interaction associated with steep diapirs and allochthonous salt| Flinders and willouran ranges, south australia, and the deepwater northern gulf of Mexico ». Thesis, Colorado School of Mines, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3602617.
Texte intégralThe eastern Willouran Ranges and northern Flinders Ranges, South Australia contain Neoproterozoic and Cambrian outcrop exposures of diapiric breccia contained in salt diapirs, salt sheets and associated growth strata that provide a natural laboratory for testing and refining models of salt-sediment interaction, specifically allochthonous salt initiation and emplacement and halokinetic deformation. Allochthonous salt, which is defined as a sheet-like diapir of mobile evaporite emplaced at younger stratigraphic levels above the autochthonous source, is emplaced due to the interplay between the rate of salt supply to the front of the sheet and the sediment-accumulation rate, and may be flanked by low- to high-angle stratal truncations to halokinetic folds. Halokinetic sequences (HS) are localized (<1000 m) unconformity-bound successions of growth strata adjacent to salt diapirs that form as drape folds due to the interplay between salt rise rate (R) and sediment accumulation rate (A). HS stack to form tabular and tapered composite halokinetic sequences (CHS), which have narrow and broad zones of thinning, respectively. The concepts of CHS formation are derived from outcrops in shallow water to subaerial depositional environments in La Popa Basin, Mexico and the Flinders Ranges, South Australia. Current models for allochthonous salt emplacement, including surficial glacial flow, advance above subsalt shear zones and emplacement along tip thrusts, do not address how salt transitions from steep feeders to low-angle sheets and the model for the formation of halokinetic sequences has yet to be fully applied or tested in a deepwater setting. Thus, this study integrates field data from South Australia with subsurface data from the northern Gulf of Mexico to test the following: (1) current models of allochthonous salt advance and subsalt deformation using structural analysis of stratal truncations adjacent to outcropping salt bodies, with a focus on the transition from steep diapirs to shallow salt sheets in South Australia; and (2) the outcrop-based halokinetic sequence model using seismic and well data from the Auger diapir, located in the deepwater northern Gulf of Mexico. Structural analysis of strata flanking steep diapirs and allochthonous salt in South Australia reveals the transition from steep diapirs to shallowly-dipping salt sheets to be abrupt and involves piston-like breakthrough of roof strata, freeing up salt to flow laterally. Two models explain this transition: 1) salt-top breakout, where salt rise occurs inboard of the salt flank, thereby preserving part of the roof beneath the sheet; and 2) salt-edge breakout, where rise occurs at the edge of the diapir with no roof preservation. Shear zones, fractured or mixed `rubble zones' and thrust imbricates are absent in strata beneath allochthonous salt and adjacent to steep diapirs. Rather, halokinetic drape folds, truncated roof strata and low- and high-angle bedding intersections are among the variety of stratal truncations adjacent to salt bodies in South Australia. Interpretation and analysis of subsurface data around the Auger diapir reveals similar CHS geometries, stacking patterns and ratios of salt rise and sediment accumulation rates, all of which generally corroborate the halokinetic sequence model. The results of this study have important implications for salt-sediment interaction, but are also critical to understanding and predicting combined structural-stratigraphic trap geometry, reservoir prediction and hydrocarbon containment in diapir-flank settings.
Higgins, Jonathan. « The Pamatta Pass Canyon Complex : Neoproterozoic Wonoka Formation, Flinders Ranges, South Australia / ». Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09SB/09sbh636.pdf.
Texte intégralNational Grid Reference:-Orroroo Sheet SI 54-1 (1:250,000 Geological Series). One col. folded map in pocket on back cover. Includes bibliographical references (8 leaves ).
Fuller, Margaret. « Early Cambrian corals from the Moorowie Formation, Eastern Flinders Ranges, South Australia / ». Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09SM/09smf967.pdf.
Texte intégralChow, Angie N. C. « Geomorphic evolution of the Mt. Arden Creek Valley, southern Flinders Ranges, South Australia / ». Title page, contents and abstract only, 1992. http://web4.library.adelaide.edu.au/theses/09SB/09sbc552.pdf.
Texte intégralOn title page: National grid reference Orroroo SI 54-1 6533-4 (1:250 000). Includes bibliographical references (leaves 8-11).
Meredith, Kirsten. « Geological history of the Waukarie Creek Canyon complex, southern Flinders Ranges, South Australia / ». Title page and contents only, 1997. http://web4.library.adelaide.edu.au/theses/09SB/09sbm559.pdf.
Texte intégralNational Grid reference Port Augusta SI 53-4 Orroroo SI 54-1. Includes bibliographical references (leaves 41-43).
Nitschke, Nicholas Leigh. « Identification of aeolian dust mantles in the semi-arid Flinders Ranges, South Australia / ». Title page, table of contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09ENVSH/09envshn732.pdf.
Texte intégralChor, Carly Choi-Choo. « Palaeohydrology of a late Pleistocene wetland in the central Flinders Ranges, South Australia / ». Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09SB/09sbc5511.pdf.
Texte intégralGreene, Susan J. « A geomorphological and sedimentological study of a climbing dune, Northern Flinders Ranges, South Australia / ». Title page, contents and abstract only, 1994. http://web4.library.adelaide.edu.au/theses/09AR/09arg8118.pdf.
Texte intégralLivres sur le sujet "Diapirs South Australia Flinders Ranges"
Selby, J. Corridors through time : The geology of the Flinders Ranges, South Australia. Netley, S. Australia : State Publishing, 1990.
Trouver le texte intégral(Photographer), Pete Dobre', dir. Arkaroola : Northern Flinders Ranges, South Australia. Oz Scapes, 2000.
Trouver le texte intégralO'Neil, Viking. South Australia : The Flinders Ranges in Color. Viking, 1988.
Trouver le texte intégralDolby, Tim, et Rohan Clarke. Finding Australian Birds. CSIRO Publishing, 2014. http://dx.doi.org/10.1071/9781486300846.
Texte intégralChapitres de livres sur le sujet "Diapirs South Australia Flinders Ranges"
Williams, Martin. « Flinders Ranges, South Australia : Solving the Puzzle (1993–2007) ». Dans Nile Waters, Saharan Sands, 149–56. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25445-6_18.
Texte intégralDyson, Ian A., et Mark G. Rowan. « Geology of a Welded Diapir and Flanking Mini-Basins in the Flinders Ranges of South Australia ». Dans Salt Sediment Interactions and Hydrocarbon Prospectivity : Concepts, Applications, and Case Studies for the 21st Century : 24th Annual, 69–89. SOCIETY OF ECONOMIC PALEONTOLOGISTS AND MINERALOGISTS, 2004. http://dx.doi.org/10.5724/gcs.04.24.0069.
Texte intégralGannaway, C. E., K. A. Giles, R. A. Kernen, M. G. Rowan et T. E. Hearon. « Comparison of the Depositional and Halokinetic History of Suprasalt and Subsalt Minibasins at Patawarta Diapir, Flinders Ranges, South Australia ». Dans Sedimentary Basins : Origin, Depositional Histories, and Petroleum Systems. SEPM Society for Sedimentary Geology, 2014. http://dx.doi.org/10.5724/gcs.14.33.0428.
Texte intégralCrossing, A. R., et V. A. Gostin. « Isotopic signatures of carbonates associated with Sturtian (Neoproterozoic) glacial facies, central Flinders Ranges, South Australia ». Dans Earth's Glacial Record, 165–75. Cambridge University Press, 1994. http://dx.doi.org/10.1017/cbo9780511628900.013.
Texte intégralDyson, Ian A. « Interpreted Shallow and Deep-Water Depositional Systems of the Beltana Mini-Basin in the Northern Flinders Ranges, South Australia ». Dans Salt Sediment Interactions and Hydrocarbon Prospectivity : Concepts, Applications, and Case Studies for the 21st Century : 24th Annual, 997–1030. SOCIETY OF ECONOMIC PALEONTOLOGISTS AND MINERALOGISTS, 2004. http://dx.doi.org/10.5724/gcs.04.24.0997.
Texte intégralActes de conférences sur le sujet "Diapirs South Australia Flinders Ranges"
Kernen, Rachelle, Elizabeth Anthony, Jason Ricketts, Julian Biddle et Jose A. Garcia. « THERMAL ALTERATION HISTORY OF NEOPROTEROZOIC BASALT XENOLITHS IN THE PATAWARTA AND WITCHELINA DIAPIRS, FLINDERS AND WILLOURAN RANGES, SOUTH AUSTRALIA ». Dans 51st Annual GSA South-Central Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017sc-289119.
Texte intégralGiles, Sarah, Rachelle Kernen, Asmara Lehrmann et Katherine Giles. « EVOLUTION OF A SUPRASALT MINIBASIN : NEOPROTEROZOIC (EDIACARAN) PATAWARTA SALT SHEET, FLINDERS RANGES, SOUTH AUSTRALIA ». Dans 51st Annual GSA South-Central Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017sc-289435.
Texte intégralLehrmann, Asmara, Rachelle Kernen, Sarah Giles et Katherine Giles. « TIMING OF ALLOCHTHONOUS SALT EMPLACEMENT OF THE NEOPROTEROZOIC (EDIACARAN) PATAWARTA SALT SHEET, FLINDERS RANGES, SOUTH AUSTRALIA : EVIDENCE FROM THE SUBSALT MINIBASIN ». Dans 51st Annual GSA South-Central Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017sc-289392.
Texte intégralMcmahon, William, Alex G. Liu, Benjamin Tindal et M. G. Kleinhans. « EDIACARAN LIFE CLOSE TO LAND : COASTAL AND SHOREFACE HABITATS OF THE EDIACARAN MACROBIOTA, THE CENTRAL FLINDERS RANGES, SOUTH AUSTRALIA ». Dans GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-355663.
Texte intégral