Littérature scientifique sur le sujet « Differential electrochemical mass spectrometry (DEMS) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Differential electrochemical mass spectrometry (DEMS) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Differential electrochemical mass spectrometry (DEMS)"
Clark, Ezra L. « (Invited) Investigations of Electrochemical CO2 Reduction with Differential Electrochemical Mass Spectrometry ». ECS Meeting Abstracts MA2023-01, no 26 (28 août 2023) : 1720. http://dx.doi.org/10.1149/ma2023-01261720mtgabs.
Texte intégralGoyal, Akansha, Christoph J. Bondue, Matthias Graf et Marc T. M. Koper. « Effect of pore diameter and length on electrochemical CO2 reduction reaction at nanoporous gold catalysts ». Chemical Science 13, no 11 (2022) : 3288–98. http://dx.doi.org/10.1039/d1sc05743j.
Texte intégralShimizu, Shugo, Atsunori Ikezawa, Takeyoshi Okajima et Hajime Arai. « Quantitative Differential Electrochemical Mass Spectroscopy Analysis of Electrochemical Carbon Corrosion Reactions in Alkaline Electrolyte Solutions ». ECS Meeting Abstracts MA2024-02, no 60 (22 novembre 2024) : 4054. https://doi.org/10.1149/ma2024-02604054mtgabs.
Texte intégralKim, Dong Wook, Su Mi Ahn, Jungwon Kang, Jungdon Suk, Hwan Kyu Kim et Yongku Kang. « In situ real-time and quantitative investigation on the stability of non-aqueous lithium oxygen battery electrolytes ». Journal of Materials Chemistry A 4, no 17 (2016) : 6332–41. http://dx.doi.org/10.1039/c6ta00371k.
Texte intégralQueiroz, Adriana, Wanderson Oliveira da Silva, Daniel Cantane, Igor Messias, Maria Rodrigues Pinto, Fabio De Lima et Raphael Nagao. « Building a Differential Electrochemical Mass Spectrometry (DEMS) : A Powerful Toll for Investigation of (photo)Electrochemical Processes ». ECS Meeting Abstracts MA2021-01, no 46 (30 mai 2021) : 1873. http://dx.doi.org/10.1149/ma2021-01461873mtgabs.
Texte intégralCuomo, Angelina, Pavlo Nikolaienko et Karl J. J. Mayrhofer. « Designing a Novel Setup for High-Throughput Investigations of Electrochemical Reactions in Real Time ». ECS Meeting Abstracts MA2023-02, no 55 (22 décembre 2023) : 2702. http://dx.doi.org/10.1149/ma2023-02552702mtgabs.
Texte intégralCelorrio, V., L. Calvillo, R. Moliner, E. Pastor et M. J. Lázaro. « Carbon nanocoils as catalysts support for methanol electrooxidation : A Differential Electrochemical Mass Spectrometry (DEMS) study ». Journal of Power Sources 239 (octobre 2013) : 72–80. http://dx.doi.org/10.1016/j.jpowsour.2013.03.037.
Texte intégralWiniwarter, Anna, Kim Degn Jensen et Johannes Novak Hartmann. « Quantitative Electrochemistry-Mass Spectrometry : Real-Time Detection of Volatile Products for Electrocatalysis and Batteries ». ECS Meeting Abstracts MA2023-01, no 48 (28 août 2023) : 2537. http://dx.doi.org/10.1149/ma2023-01482537mtgabs.
Texte intégralMusilová-Kebrlová, Natálie, Pavel Janderka et Libuše Trnková. « Electrochemical processes of adsorbed chlorobenzene and fluorobenzene on a platinum polycrystalline electrode ». Collection of Czechoslovak Chemical Communications 74, no 4 (2009) : 611–25. http://dx.doi.org/10.1135/cccc2008221.
Texte intégralAmin, Hatem M. A., et Helmut Baltruschat. « How many surface atoms in Co3O4 take part in oxygen evolution ? Isotope labeling together with differential electrochemical mass spectrometry ». Physical Chemistry Chemical Physics 19, no 37 (2017) : 25527–36. http://dx.doi.org/10.1039/c7cp03914j.
Texte intégralThèses sur le sujet "Differential electrochemical mass spectrometry (DEMS)"
Sun, Shiguo [Verfasser]. « Electrooxidation of small organic molecules at elevated temperature and pressure : an online Differential Electrochemical Mass Spectrometry (DEMS) study / Shiguo Sun ». Ulm : Universität Ulm. Fakultät für Naturwissenschaften, 2012. http://d-nb.info/102493134X/34.
Texte intégralAshton, Sean James [Verfasser], Matthias [Akademischer Betreuer] Arenz, Moniek [Akademischer Betreuer] Tromp et Ulrich K. [Akademischer Betreuer] Heiz. « The Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS) / Sean Ashton. Gutachter : Matthias Arenz ; Moniek Tromp. Betreuer : Ulrich K. Heiz ». München : Universitätsbibliothek der TU München, 2011. http://d-nb.info/1015029949/34.
Texte intégralSubba, Rao Viruru Subbarao. « Electrochemical characterization of direct alcohol fuel cells using in-situ differential electrochemical mass spectrometry ». kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/645809/645809.pdf.
Texte intégralRao, Vineet. « Electrochemical characterization of direct alcohol fuel cells using in-situ differential electrochemical mass spectrometry ». kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/645809/645809.pdf.
Texte intégralTreufeld, Imre. « I. Polymer Films for High Temperature Capacitor ApplicationsII. Differential Electrochemical Mass Spectrometry ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1465503063.
Texte intégralVorms, Evgeniia. « Cinétique de l’oxydation de l’hydrate d’hydrazine et d’autres combustibles sans carbone sur électrode de nickel ». Electronic Thesis or Diss., Strasbourg, 2025. http://www.theses.fr/2025STRAF003.
Texte intégralElectrochemical energy production from carbon-free fuels has recently attracted much attention. This manuscript focuses on studying the mechanism of the hydrazine oxidation reaction (HHOR) on Ni electrodes and comparing it with the ones of the borohydride and ammonia-borane oxidation reactions (BOR, ABOR). Metallic Ni sites were identified as the catalytic sites for the HHOR, BOR, and ABOR, while the presence of Ni (hydr)oxide sites was found to negatively affect activity without a clear influence on the reaction mechanism. Based on the results of DFT calculations, microkinetic modelling, and online DEMS measurements, a mechanism for HHOR on Ni was proposed. It involves the direct reaction of dissolved hydrazine with adsorbed Ni-OH species forming N2Hx,ad (x<4) intermediate, which is subsequently electrochemically oxidized, leading to the formation of N2 and water
Ferreira, de Araújo Jorge Vicente [Verfasser], Peter [Akademischer Betreuer] Strasser, Helmut [Gutachter] Baltruschat et Matthias [Gutachter] Bickermann. « Differential electrochemical mass spectrometry – design, set up and application for kinetic isotope labeling studies of the electrocatalytic CO2 electroreduction / Jorge Vicente Ferreira de Araújo ; Gutachter : Helmut Baltruschat, Matthias Bickermann ; Betreuer : Peter Strasser ». Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1211392236/34.
Texte intégralMachado, Eduardo Giangrossi. « Eletro-oxidação de ácido fórmico assistida por hidrazina ». Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/75/75134/tde-15032017-111419/.
Texte intégralRecently, the mechanism by which formic acid is oxidized is a matter of debate on the literature. There is disagreement on the pathways that the process may occur as well as which would be the intermediates participating. In this sense, there are some work exploring another aspect of this reaction, such as its behavior facing the addition of an additive. Among them, hydrazine has been chosen as it is another molecule of interest for energy generation devices such as fuel cells. In this fashion, it is argued that the presence of hydrazine would not interfere in the electro-oxidation of formic acid and, therefore, would yield an additive current when being co-oxidized. The complex behavior of a system may display new and relevant information thus this methodology was employed to revisit this system. It was found that the system would behave, instead of the argued additive behavior, synergistically and that there are striking differences on the time-series of formic acid, such as an increase on the duration of the process and the alteration of some of its variables. Also, it was observed a change in the potentiostatic oscillations, showing a dependence of the process with the morphology of the surface employed. It was proposed that hydrazine would act reducing the accumulation of oxygenated species on the surface of the electrode, postponing the end of the time-series. Next, it was employed a spectrometric technique (DEMS) to evaluate the production of gaseous products (CO2) and it was found that, in the presence of hydrazine, formic acid gets oxidized in a more facile way, in lower overpotential values. It was proposed that, besides preventing the accumulation of oxygenated species, hydrazine would disturb the decomposition of formic acid to COads, allowing a direct oxidation in lower overpotentials. Finally, for deepening the understanding of the superficial processes it was employed an imaging technique (EMSI). It was discovered that the decomposition of formic acid to COads there is a reactional front that repeats itself cycle after cycle during the time-series and that it is possible to monitor changes in the coverage of adsorbates by changes in the intensity of the image. It was not possible to obtain data in the presence of hydrazine since it generates many bubbles that disrupt the experiment. As conclusion of this work it is presented the thesis that, with the amount of evidences herein presented, the interaction between formic acid and hydrazine is synergistical rather than additive, as stated on the literature.
Rao, Vineet [Verfasser]. « Electrochemical characterization of direct alcohol fuel cells using in-situ differential electrochemical mass spectrometry / Vineet Rao ». 2008. http://d-nb.info/99056097X/34.
Texte intégralHeinen, Martin [Verfasser]. « Electrooxidation of small organic molecules studied by simultaneous in situ ATR-FTIRS and on-line differential electrochemical mass spectrometry / von Martin Heinen ». 2010. http://d-nb.info/1010525484/34.
Texte intégralLivres sur le sujet "Differential electrochemical mass spectrometry (DEMS)"
Ashton, Sean James. Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS). Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4.
Texte intégralDesign, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS). Springer London, Limited, 2012.
Trouver le texte intégralAshton, Sean James. Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS). Springer Berlin / Heidelberg, 2014.
Trouver le texte intégralDesign Construction and Research Application of a Differential Electrochemical Mass Spectrometer Dems Springer Theses. Springer, 2012.
Trouver le texte intégralChapitres de livres sur le sujet "Differential electrochemical mass spectrometry (DEMS)"
Ashton, Sean James. « Differential Electrochemical Mass Spectrometry ». Dans Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 9–27. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_2.
Texte intégralAshton, Sean James. « Practical Aspects of the DEMS Instrument ». Dans Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 81–112. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_4.
Texte intégralAshton, Sean James. « Design and Construction of the DEMS Instrument ». Dans Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 29–80. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_3.
Texte intégralAshton, Sean James. « The Electrochemical Oxidation of HSAC Catalyst Supports ». Dans Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 153–203. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_6.
Texte intégralAshton, Sean James. « Introduction ». Dans Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 1–8. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_1.
Texte intégralAshton, Sean James. « Methanol Oxidation on HSAC Supported Pt and PtRu Catalysts ». Dans Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 113–51. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_5.
Texte intégralAshton, Sean James. « Summary ». Dans Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 205–8. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_7.
Texte intégralZhao, Zhiwei, Long Pang, Zhi Yang, Yelong Zhang, Zhangquan Peng et Limin Guo. « Differential Electrochemical Mass Spectrometry for Lithium-Ion Batteries* ». Dans Microscopy and Microanalysis for Lithium-Ion Batteries, 251–76. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003299295-9.
Texte intégralShi, Boyu, Kewei Liu, Eungje Lee et Chen Liao. « Differential electrochemical mass spectrometry (DEMS) for batteries ». Dans Batteries. IOP Publishing, 2021. http://dx.doi.org/10.1088/978-0-7503-2682-7ch5.
Texte intégralCremers, C., et D. Bayer. « Differential electrochemical mass spectrometry (DEMS) technique for direct alcohol fuel cell characterization ». Dans Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, 65–86. Elsevier, 2012. http://dx.doi.org/10.1533/9780857095480.1.65.
Texte intégral