Littérature scientifique sur le sujet « Drinfeld twist »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Drinfeld twist ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Drinfeld twist"

1

Meljanac, D., S. Meljanac, Z. Škoda, and R. Štrajn. "On interpolations between Jordanian twists." International Journal of Modern Physics A 35, no. 26 (2020): 2050160. http://dx.doi.org/10.1142/s0217751x20501602.

Texte intégral
Résumé :
We consider two families of Drinfeld twists generated from a simple Jordanian twist further twisted with 1-cochains. Using combinatorial identities, they are presented as a series expansion in the dilatation and momentum generators. These twists interpolate between two simple Jordanian twists. For an expansion of a family of twists [Formula: see text], we also show directly that the 2-cocycle condition reduces to previously proven identities.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Meljanac, Daniel, Stjepan Meljanac, Zoran Škoda, and Rina Štrajn. "Interpolations between Jordanian twists, the Poincaré–Weyl algebra and dispersion relations." International Journal of Modern Physics A 35, no. 08 (2020): 2050034. http://dx.doi.org/10.1142/s0217751x20500347.

Texte intégral
Résumé :
We consider a two-parameter family of Drinfeld twists generated from a simple Jordanian twist further twisted by 1-cochains. Twists from this family interpolate between two simple Jordanian twists. Relations between them are constructed and discussed. It is proved that there exists a one-parameter family of twists identical to a simple Jordanian twist. The twisted coalgebra, star product and coordinate realizations of the [Formula: see text]-Minkowski noncommutative space–time are presented. Real forms of Jordanian deformations are also discussed. The method of similarity transformations is ap
Styles APA, Harvard, Vancouver, ISO, etc.
3

Škoda, Zoran, and Martina Stojić. "Comment on ‘Twisted bialgebroids versus bialgebroids from a Drinfeld twist’." Journal of Physics A: Mathematical and Theoretical 57, no. 10 (2024): 108001. http://dx.doi.org/10.1088/1751-8121/ad279d.

Texte intégral
Résumé :
Abstract A class of left bialgebroids whose underlying algebra A ♯ H is a smash product of a bialgebra H with a braided commutative Yetter–Drinfeld H-algebra A has recently been studied in relation to models of field theories on noncommutative spaces. In Borowiec and Pachoł (2017 J. Phys. A: Math. Theor. 50 055205) a proof has been presented that the bialgebroid A F ♯ H F where HF and AF are the twists of H and A by a Drinfeld 2-cocycle F = ∑ F 1 ⊗ F 2 is isomorphic to the twist of bialgebroid A ♯ H by the bialgebroid 2-cocycle ∑ 1 ♯ F 1 ⊗ 1 ♯ F 2 induced by F. They assume H is quasitriangular
Styles APA, Harvard, Vancouver, ISO, etc.
4

Aschieri, Paolo. "Deformation quantization of principal bundles." International Journal of Geometric Methods in Modern Physics 13, no. 08 (2016): 1630010. http://dx.doi.org/10.1142/s0219887816300105.

Texte intégral
Résumé :
We outline how Drinfeld twist deformation techniques can be applied to the deformation quantization of principal bundles into noncommutative principal bundles and, more in general, to the deformation of Hopf–Galois extensions. First, we twist deform the structure group in a quantum group, and this leads to a deformation of the fibers of the principal bundle. Next, we twist deform a subgroup of the group of automorphisms of the principal bundle, and this leads to a noncommutative base space. Considering both deformations, we obtain noncommutative principal bundles with noncommutative fiber and
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kürkçüoglu, Seçkin, and Christian Sämann. "Drinfeld twist and general relativity with fuzzy spaces." Classical and Quantum Gravity 24, no. 2 (2006): 291–311. http://dx.doi.org/10.1088/0264-9381/24/2/003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Aschieri, Paolo, and Alexander Schenkel. "Noncommutative connections on bimodules and Drinfeld twist deformation." Advances in Theoretical and Mathematical Physics 18, no. 3 (2014): 513–612. http://dx.doi.org/10.4310/atmp.2014.v18.n3.a1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Borowiec, Andrzej, and Anna Pachoł. "Twisted bialgebroids versus bialgebroids from a Drinfeld twist." Journal of Physics A: Mathematical and Theoretical 50, no. 5 (2017): 055205. http://dx.doi.org/10.1088/1751-8121/50/5/055205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Meljanac, Stjepan, Zoran Škoda, and Saša Krešić–Jurić. "Symmetric ordering and Weyl realizations for quantum Minkowski spaces." Journal of Mathematical Physics 63, no. 12 (2022): 123508. http://dx.doi.org/10.1063/5.0094443.

Texte intégral
Résumé :
Symmetric ordering and Weyl realizations for non-commutative quantum Minkowski spaces are reviewed. Weyl realizations of Lie deformed spaces and corresponding star products, as well as twist corresponding to Weyl realization and coproduct of momenta, are presented. Drinfeld twists understood in Hopf algebroid sense are also discussed. A few examples of corresponding Weyl realizations are given. We show that for the original Snyder space, there exists symmetric ordering but no Weyl realization. Quadratic deformations of Minkowski space are considered, and it is demonstrated that symmetric order
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhang, Yu, and Xiaomin Tang. "Quantization of a Class of Super W-Agebras." Algebra Colloquium 29, no. 04 (2022): 633–42. http://dx.doi.org/10.1142/s100538672200044x.

Texte intégral
Résumé :
We study a class of super W-algebras whose even part is the Virasoro type Lie algebra [Formula: see text]. We quantize the Lie superbialgebra of the super W-algebra by the Drinfeld twist quantization technique and obtain a class of noncommutative and noncocommutative Hopf superalgebras.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yang, Yu, and Xingtao Wang. "Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra." Axioms 14, no. 1 (2024): 7. https://doi.org/10.3390/axioms14010007.

Texte intégral
Résumé :
In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) W(Γ). Additionally, we prove that all LB structures on W(Γ) possess a triangular coboundary. We also quantize W(Γ) using the Drinfeld-twist quantization technique and identify a group of noncommutative algebras and noncocommutative Hopf algebras.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Drinfeld twist"

1

Brochier, Adrien. "Un théorème de Kohno-Drinfeld pour les connexions de Knizhnik-Zamolodchikov cyclotomiques." Phd thesis, Université de Strasbourg, 2011. http://tel.archives-ouvertes.fr/tel-00598766.

Texte intégral
Résumé :
Dans cette thèse, on donne une construction explicite des représentations de monodromie provenant d'analogues "cyclotomiques" de la connexion de Knizhnik--Zamolodchikov. Ce sont des représentations de $B_n^1$, le groupe de tresse de type de Coxeter B. On commence par construire, en utilisant des twists dynamiques, des représentations algébriques de $B_n^1$ qui étendent naturellement les représentations du groupe de tresse $B_n$ obtenues grâce aux groupes quantiques et aux $R$-matrices. On montre ensuite par des arguments de rigidité que ces représentations algébriques s'identifient aux représe
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ipia, Carlos Andrés Palechor. "Teoria de campos com supersimetria deformada em três dimensões espaçotemporais." reponame:Repositório Institucional da UFABC, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Weber, Thomas. "Braided Commutative Geometry and Drinfel'd Twist Deformations." Tesi di dottorato, 2019. http://www.fedoa.unina.it/12959/1/ThomasWeberPhDThesis.pdf.

Texte intégral
Résumé :
This thesis revolves around the notion of twist star product, which is a certain type of deformation quantization induced by quantizations of a symmetry of the system. On one hand we discuss obstructions of twist star products, while on the other hand we provide a recipe to obtain new examples as projections from known ones. Furthermore, we construct a noncommutative Cartan calculus on braided commutative algebras, generalizing the calculus on twist star product algebras. The starting point is the observation that Drinfel'd twists not only deform the algebraic structure of quasi-triangular Hop
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Drinfeld twist"

1

Bianchi, Massimo, Roland Allen, Antonio Mondragon, et al. "Drinfeld Twist." In Concise Encyclopedia of Supersymmetry. Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Spieß, Michael. "Twists of Drinfeld–Stuhler Modular Varieties." In A Collection of Manuscripts Written in Honour of Andrei A. Suslin on the Occasion of His Sixtieth Birthday. EMS Press, 2010. http://dx.doi.org/10.4171/dms/5/17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Drinfeld twist"

1

Bieliavsky, Pierre. "On Drinfel'd twists and their use in non-commutative geometry." In Frontiers of Fundamental Physics 14. Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.224.0133.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!