Littérature scientifique sur le sujet « DYRK2 »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « DYRK2 ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "DYRK2"
Correa-Sáez, Alejandro, Rafael Jiménez-Izquierdo, Martín Garrido-Rodríguez, Rosario Morrugares, Eduardo Muñoz et Marco A. Calzado. « Updating dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) : molecular basis, functions and role in diseases ». Cellular and Molecular Life Sciences 77, no 23 (27 mai 2020) : 4747–63. http://dx.doi.org/10.1007/s00018-020-03556-1.
Texte intégralKinstrie, Ross, Pamela A. Lochhead, Gary Sibbet, Nick Morrice et Vaughn Cleghon. « dDYRK2 and Minibrain interact with the chromatin remodelling factors SNR1 and TRX ». Biochemical Journal 398, no 1 (27 juillet 2006) : 45–54. http://dx.doi.org/10.1042/bj20060159.
Texte intégralBanerjee, Sourav, Chenggong Ji, Joshua E. Mayfield, Apollina Goel, Junyu Xiao, Jack E. Dixon et Xing Guo. « Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2 ». Proceedings of the National Academy of Sciences 115, no 32 (9 juillet 2018) : 8155–60. http://dx.doi.org/10.1073/pnas.1806797115.
Texte intégralSeo, D. H., H. W. Ma, S. Kim, D. H. Kim, H. K. Kim, S. H. Lee, S. Kim et al. « P001 The novel DYRK1a inhibitor VRN024219 alleviates disease severity on the IBD mouse models by modulating T-cell differentiation ». Journal of Crohn's and Colitis 14, Supplement_1 (janvier 2020) : S129. http://dx.doi.org/10.1093/ecco-jcc/jjz203.130.
Texte intégralBanerjee, Sourav, Tiantian Wei, Jue Wang, Jenna J. Lee, Haydee L. Gutierrez, Owen Chapman, Sandra E. Wiley et al. « Inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 2 perturbs 26S proteasome-addicted neoplastic progression ». Proceedings of the National Academy of Sciences 116, no 49 (21 novembre 2019) : 24881–91. http://dx.doi.org/10.1073/pnas.1912033116.
Texte intégralPark, Chun Shik, Ye Shen, Koramit Suppipat, Andrew Lewis, Julie Tomolonis, Monica Puppi, toni-Ann Mistretta, Leyuan Ma, Michael R. Green et Daniel Lacorazza. « DYRK2 Inhibits the Self-Renewal of Leukemic Stem Cells in Chronic Myeloid Leukemia By Inducing Degradation of c-Myc Downstream of the Reprogramming Factor KLF4 ». Blood 128, no 22 (2 décembre 2016) : 1879. http://dx.doi.org/10.1182/blood.v128.22.1879.1879.
Texte intégralMao, Cui, Xing Ju, Haijian Cheng, Xixia Huang, Fugui Jiang, Yuni Yao, Xianyong Lan et Enliang Song. « Determination of genetic variation within the <i>DYRK2</i> ; gene and its associations with milk traits in cattle ». Archives Animal Breeding 63, no 2 (9 septembre 2020) : 315–23. http://dx.doi.org/10.5194/aab-63-315-2020.
Texte intégralMorrugares, Rosario, Alejandro Correa-Sáez, Rita Moreno, Martín Garrido-Rodríguez, Eduardo Muñoz, Laureano de la Vega et Marco A. Calzado. « Phosphorylation-dependent regulation of the NOTCH1 intracellular domain by dual-specificity tyrosine-regulated kinase 2 ». Cellular and Molecular Life Sciences 77, no 13 (11 octobre 2019) : 2621–39. http://dx.doi.org/10.1007/s00018-019-03309-9.
Texte intégralShen, Yifen, Li Zhang, Donglin Wang, Yifeng Bao, Chao Liu, Zhiwei Xu, Wei Huang et Chun Cheng. « Regulation of Glioma Cells Migration by DYRK2 ». Neurochemical Research 42, no 11 (4 juillet 2017) : 3093–102. http://dx.doi.org/10.1007/s11064-017-2345-2.
Texte intégralAman, La Ode, Rahmana Emran Kartasasmita et Daryono Hadi Tjahjono. « Virtual screening of curcumin analogues as DYRK2 inhibitor : Pharmacophore analysis, molecular docking and dynamics, and ADME prediction ». F1000Research 10 (17 mai 2021) : 394. http://dx.doi.org/10.12688/f1000research.28040.1.
Texte intégralThèses sur le sujet "DYRK2"
Linnert, Carmen [Verfasser]. « Rolle der Apoptose-relevanten Gene P53AIP1 und DYRK2 für die Prädisposition zu Prostatakarzinom : eine Assoziationsstudie unter Testung des High Resolution Meltings als alternative Genotypisierungstechnik / Carmen Linnert ». Ulm : Universität Ulm. Medizinische Fakultät, 2012. http://d-nb.info/1023729199/34.
Texte intégralBranca, Caterina, Darren M. Shaw, Ramona Belfiore, Vijay Gokhale, Arthur Y. Shaw, Christopher Foley, Breland Smith et al. « Dyrk1 inhibition improves Alzheimer's disease-like pathology ». WILEY, 2017. http://hdl.handle.net/10150/626504.
Texte intégralKinstrie, Ross Stuart. « Identification of Drosophila DYRK family substrates and interacting proteins ». Thesis, University of Glasgow, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433084.
Texte intégralFaouzi, Abdelfattah. « Synthèses et évaluations biologiques d’analogues de la combrétastatine A-4 et d’inhibiteurs de kinases DYRK ». Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1233.
Texte intégralUp to now, cancer is the second deadliest pathology in the World and is still considered as one of the most challenging public health issue. Globally, it has been assessed to be the main pathologic cause of death by the World Health Organization. This bad prognosis is partly due to the ability of cancer cells to give metastases but also to resistances phenomenon impeding drastically the effect of chemotherapeutic and radiotherapeutic treatments. As a consequence, there is currently a critical lack of effective treatments which would completely eradicate tumor cells, with minimal side effects. In spite of some difficulties in this competitive research area, the discovery of cancer therapeutics remains stimulating and we aim to achieve the synthesis of novel anticancer agents.Given its pivotal role in tumor growth and survival, the tumor vasculature represents an attractive target for anticancer therapy. Apart from angiogenesis inhibitors that compromise the formation of new blood vessels, the class of vascular disrupting agents (VDAs) targets endothelial cells and pericytes of the already established tumor vasculature, resulting in tumor ischemia and necrosis. A striking example of VDA is the combretastatin A-4, also known as CA-4, which was originally isolated from the bark of the South African willow tree Combretum caffrum by the American scientist G.R. Pettit in 1989. These products demonstrated to be efficient against a wide array of cancers such as breast, colon, lung or ovarian cell lines. New CA-4 analogs containing different heterocycles instead of the hydroxymethoxy substituted pharmacomodulable B ring were prepared and evaluated for their in cellulo tubulin polymerization inhibition and antiproliferative activities. In the other hand, tumor cell survival is a complex process which remains poorly understood. As part of the survival machinery, chemoresistances and DNA repairs are central elements regulated by a prosurvival/proapoptotic signal balance. Protein kinases are known to be directly involved in this signal transmission through molecular interactions. As such, DYRK kinases and most specifically DYRK1A/1B, were part of numerous recent studies due to their involvement in cancer and other pathologies. DYRK1B (also called Mirk kinase) is an ubiquitous kinase which was proved to be over-expressed in many cancers such as pancreatic, ovarian or colon. Its involvement as a regulator of DNA repair and tumor cell survival was assessed, phosphorylating specifically serine, threonine and tyrosine residues. Also, another closely related isoform known as DYRK1A, was mapped in the Down syndrome critical region located itself on chromosome 21. Interestingly, this kinase was not only uncovered to play a fundamental role in glioblastomas survival but was also associated with abnormal brain development in early stages and mental retardations. Particularly, DYRK1A was found to hyperphosphorylate microtubule-associated tau protein, resulting into genesis of neurofibrillary tangles. As a consequence, DYRK1A has become one of the most targeted proteins in order to improve cognitive impairment of patients suffering from Down syndrome or Alzheimer’s disease. Initially designed to target protein kinase CK2, one of our molecules was also tested on DYRK kinases. This compound exhibited a strong activity against DYRK1A/DYRK1B whilst being inactive on other protein kinases. Consequently, it was considered as our hit compound and (i) we synthetized derivatives as dual or single inhibitors of DYRK1A/DYRK1B, (ii) evaluated their biological activities (with emphasis on the blood brain barrier), and (iii) finally synthesized nanoparticles loaded with our inhibitors
Tahtouh, Tania. « Optimisation et caractérisation de nouveaux inhibiteurs pharmacologiques de DYRKs et CLKs, les leucettines ». Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S015.
Texte intégralDYRKs (dual specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases) are two families of kinases belonging to the CMGC group. They are involved in the development of Alzheimer's disease and Down syndrome. We here present the optimization and a detailed biological characterization of Leucettines, a family of pharmacological inhibitors of DYRKs/CLKs derived from Leucettamine B, an alkaloid produced by a marine sponge. We studied the structure/activity relationship of this class of inhibitors on a set of biological responses. To investigate potential targets of these inhibitors, we implemented an affinity chromatography method. The selectivity of Leucettine L41, selected as a representative Leucettine, was studied by in vitro activity and interaction assays of recombinant kinases and affinity chromatography approaches (Leucettines immobilized on agarose beads, competition on non-selective inhibitors). Transcriptomics and proteomics approaches were used to better understand the cellular mechanism of action of Leucettine L41. These approaches confirmed the selectivity of Leucettine L41 for DYRKs and CLKs but also revealed the existence of interesting secondary targets. Leucettine L41 modulates alternative splicing of pre-mRNAs. It displays neuroprotective properties towards glutamate-induced cell death. Leucettines deserve further development as potential therapeutic agents for the treatment of Alzheimer's disease and Down syndrome
Salichs, Fradera Eulàlia. « Polyhistidine repeats and Dyrk 1a : from the localization on the function ». Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7119.
Texte intégralEl principal objectiu d'aquesta tesi ha estat el d'esbrinar noves funcions de la proteína quinasa DYRK1A en el nucli cel.lular. Donat que el domini de repetició d'histidines de DYRK1A dirigeix la proteína al compartiment d'speckles nuclears, aquesta propietat ha estat utilitzada per adreçar aquesta pregunta. Els resultats obtinguts en aquesta tesi han permès proposar els homopolímers d'histidina com una nova i general senyal de localització a speckles nuclears. Proteïnes amb segments de polihistidines, la majoria d'elles factors de transcripció, mostren un comportament intranuclear dinàmic, compatible amb un model en el quèl diferents dominis d'interacció competeixen entre ells pel reclutament de la proteína a diferents subcompartiments nuclears. El mecanisme molecular que media l'acumulació a speckles de les proteïnes amb polihistines s'ha estudiat utilitzant DYRK1A com a model. Els resultats obtinguts exclouen la unió a l'RNA com a mecanisme de reclutament i concloure que, aquest, ocorre mitjançant la interacció amb proteïnes residents. S'han identificat dues noves proteïnes interactores per a DYRK1A, l'RNA polimerasa II i el factor de transcripció Brn-3b. La fosforilació de DYRK1A sobre el domini C-terminal o CTD de l'RNA polimerasa II suggereix una funció directa de la quinasa en el procés de transcripció o del seu acoblament al processament d'RNAs missatgers. La fosforilació de DYRK1A sobre el domini d'activació de Brn-3b sembla regular positivament l'activitat transcripcional d'aquest factor. Aquests resultats indiquen una funció activa de DYRK1A en la regulació de la transcripció gènica, tant directament sobre la maquinària transcripcional com indirectament, modulant l'activitat de factors de transcripció.
PolyHistidine repeats and DYRK1A: from the localization to the function
The main objective of this thesis work has been to identify new roles for the protein kinase DYRK1A in the cell nucleus. Given that a histidine repeat in DYRK1A targets the protein to the nuclear speckle compartment, this property has been used as a tool to approach the question. The results obtained in this thesis work have allowed proposing homopolymeric histidine runs as a novel and general nuclear speckle-directing signal. Proteins with polyHistidine segments, mostly transcription factors, present a dynamic intranuclear behaviour compatible with a model in which distinct interacting domains compete for recruiting elements within the nucleus. The molecular mechanisms that mediate speckle accumulation have been studied in DYRK1A as a model system. The results allow excluding RNA binding as the recruiting mechanism and concluding that targeting is mediated by interaction with speckle-resident proteins. Two novel DYRK1A interactors have been identified during the study, the RNA polymerase II and the transcription factor Brn-3b. DYRK1A phosphorylation of the C-terminal domain or CTD of the RNA polymerase II suggests a direct role of DYRK1A on transcription or coupling of transcription with RNA processing. DYRK1A phosphorylation of Brn-3b within its activation domain seems to positively regulate Brn-3b transcriptional activity. These results confirm an active role for DYRK1A in gene transcription regulation both direct on the transcriptional machinery and indirect by modulating the activity of transcription factors.
Dyrks, Tobias [Verfasser], et Volker [Gutachter] Wulf. « Praxisrelevante Sicherheitsforschung ? Zur Bedeutung von Antizipationen in praxisorientierter Verbundforschung / Tobias Dyrks ; Gutachter : Volker Wulf ». Siegen : Universitätsbibliothek der Universität Siegen, 2020. http://d-nb.info/1236754948/34.
Texte intégralRajaonarivelo, Mialy. « Caractérisation chimique de composés cytotoxiques et inhibiteurs de la kinase DyrK 1A, isolés de plantes malgaches ». Paris 11, 2010. http://www.theses.fr/2010PA114860.
Texte intégralAs part of collaboration between the Institut Malgache de Recherches Appliquées and the Institut de Chimie des Substances Naturelles in the search for new bioactive molecules, the phytochemical study of three endemic plants from Madagascar was undertaken. These plants were selected for their biological activities : Apodocephala pauciflora (Asteraceae), a cytotoxic plant on KB cell line, Carphalea madagascariensis (Rubiaceae), an inhibitor of the activity of Dyrk 1A protein kinase and Garcinia verrucosa subsp. Orientalis (Clusiaceae) a cytotoxic plant on P388 cell line. Bioguided fractionation of ethyl acetate extracts from different parts of the plants led to the characterisation of 24 compounds belonging to the helenanolide-type sesquiterpene lactones family, 3,4-secodammarane type triterpenes family, and a polyisoprenylated phloroglucinol. Among them 8 are new compounds. The initial activity observed for these extracts was found in most of the isolated molecules
Müller, Jonathan Wolf. « Zelluläre und biophysikalische Studien an DYRK 3 der N-Terminus als Schlüssel zum Verständnis dieser Protein-Kinase / ». [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973405007.
Texte intégralPapadopoulos, Chrisovalantis [Verfasser]. « Identification and characterization of a new splice variant of the protein kinase DYRK4 and the role of DYRK1A during mitotic exit / Chrisovalantis Papadopoulos ». Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1018202714/34.
Texte intégralLivres sur le sujet "DYRK2"
Zvi︠a︡gint︠s︡ev, Vasiliĭ. Dyrka dli︠a︡ ordena. Moskva : ĖKSMO-Press, 2002.
Trouver le texte intégralKrusanov, Pavel Vasilʹevich. Amerikanskai︠a︡ dyrka : Roman. Sankt Peterburg : Amfora, 2005.
Trouver le texte intégralZakhoder, Boris Vladimirovich. Dyrki v syre : Stikhi. Moskva : "Makhaon", 2012.
Trouver le texte intégralSäfve, Torbjörn. Jag har valt att dyrka kvinnorna : Collage. [Sweden] : Prisma, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "DYRK2"
Miyata, Yoshihiko. « CK2 Inhibitors and the DYRK Family Protein Kinases ». Dans Protein Kinase CK2 Cellular Function in Normal and Disease States, 341–59. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14544-0_19.
Texte intégralBecker, Walter, et Hans-Georg Joost. « Structural and Functional Characteristics of Dyrk, a Novel Subfamily of Protein Kinases with Dual Specificity ». Dans Progress in Nucleic Acid Research and Molecular Biology, 1–17. Elsevier, 1998. http://dx.doi.org/10.1016/s0079-6603(08)60503-6.
Texte intégralActes de conférences sur le sujet "DYRK2"
Mimoto, Rei, Naoe Taira, Kiyotugu Yoshida et Yoshio Miki. « Abstract 4309 : DYRK2 regulates cancer invasiveness via Snail/E-cadherin pathway ». Dans Proceedings : AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012 ; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4309.
Texte intégralMimoto, R., Y. Imawari, M. Kamio, K. Kato, H. Nogi, Y. Toriumi, H. Takeyama, K. Yoshida et K. Uchida. « Abstract P5-04-02 : DYRK2 regulates breast cancer invasion via Snail/E-cadherin pathway ». Dans Abstracts : Thirty-Fifth Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 4‐8, 2012 ; San Antonio, TX. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/0008-5472.sabcs12-p5-04-02.
Texte intégralEdwards, J., G. Baillie, J. Quinn, R. Monreno, S. Banerjee, N. Tomkinson, S. MacKay et L. De La Vega. « Abstract P3-10-10 : DYRK2 is a novel therapeutic target in ER negative breast cancer ». Dans Abstracts : 2018 San Antonio Breast Cancer Symposium ; December 4-8, 2018 ; San Antonio, Texas. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-p3-10-10.
Texte intégralImawari, Y., RK Mimoto, N. Yamaguchi, M. Kamio, K. Kato, H. Nogi, Y. Toriumi, K. Uchida, H. Takeyama et K. Yoshida. « Abstract P5-07-07 : DYRK2 contributes to the generation of breast cancer stem cells through KLF4 ». Dans Abstracts : 2016 San Antonio Breast Cancer Symposium ; December 6-10, 2016 ; San Antonio, Texas. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.sabcs16-p5-07-07.
Texte intégralImawari, Yoshimi, Rei Mimoto, Noriko Yamaguchi, Makiko Kamio, Hiroko Nogi, Ken Uchida, Hiroshi Takeyama et Kiyotsugu Yoshida. « Abstract P4-08-04 : Downregulation of DYRK2 contributes to tumor cell proliferation by enhancing CDK14 expression in breast cancer ». Dans Abstracts : 2019 San Antonio Breast Cancer Symposium ; December 10-14, 2019 ; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-p4-08-04.
Texte intégralTaira, Naoe, Rei Mimoto, Yoshio Miki et Kiyotsugu Yoshida. « Abstract 3060 : DYRK2-mediated phosphorylation of c-Jun and c-Myc is requisite for proper control of the G1/S transition ». Dans Proceedings : AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012 ; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3060.
Texte intégralPark, Chun Shik, Ye Shen, Koramit Suppipat, Julie Tomolonis, Monica Puppi, Toni-Ann Mistretta, Leyuan Ma, Michael Green et Daniel Lacorazza. « Abstract 3334 : KLF4 promotes self-renewal by repressing DYRK2-mediated degradation of c-Myc in leukemic stem cells : development of targeted therapy ». Dans Proceedings : AACR 107th Annual Meeting 2016 ; April 16-20, 2016 ; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3334.
Texte intégralPark, Chun Shik, Ye Shen, Andrew Lewis, Koramit Suppipat, Monica Puppi, Julie Tomolonis, Taylor Chen et al. « Abstract 145 : Pharmacologic inhibition of SIAH2 stabilizes DYRK2 and inhibits survival and self-renewal in chronic myeloid leukemia (CML) leukemic stem cells ». Dans Proceedings : AACR Annual Meeting 2018 ; April 14-18, 2018 ; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-145.
Texte intégralYamashita, S., M. Chujo, K. Anami, M. Miyawaki, S. Yamamoto et K. Kawahara. « DYRK2, a Dual-Specificity Tyrosine-(Y)-Phosphorylation Regulated Kinase Gene Expression Can Be a Powerful Prognostic and Predictive Factor in Non-Small Cell Lung Cancer. » Dans American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a2685.
Texte intégralLiu, Chia Chia, Jamunarani Veeraraghavan, Ying Tan, Jin-Ah Kim, Xian Wang, Rachel Schiff et Xiao-Song Wang. « Abstract 4474 : Novel neoplastic RAD51AP1-DYRK4 fusion transcript in aggressive luminal breast cancers ». Dans Proceedings : AACR Annual Meeting 2019 ; March 29-April 3, 2019 ; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-4474.
Texte intégral