Littérature scientifique sur le sujet « Early Detection of Parkinson's Disease »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Early Detection of Parkinson's Disease ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Early Detection of Parkinson's Disease"
Kiruthika, S. « The Parkinson’s Puzzle : Early Detection & ; Diagnosis ». INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no 01 (22 janvier 2025) : 1–9. https://doi.org/10.55041/ijsrem41001.
Texte intégralN., Chandana, Divya C. D. et Radhika A. D. « A Review on Parkinsons Disease Detection ». Applied and Computational Engineering 2, no 1 (22 mars 2023) : 760–65. http://dx.doi.org/10.54254/2755-2721/2/20220675.
Texte intégralIrin Akter Liza, Ekramul Hasan, Md Musa Haque, Shah Foysal Hossain, Md Al Amin et Shahriar Ahmed. « Predictive Modeling and Early Detection of Parkinson's Disease Using Machine Learning ». Journal of Medical and Health Studies 5, no 4 (12 novembre 2024) : 97–107. http://dx.doi.org/10.32996/jmhs.2024.5.4.12.
Texte intégralKavitha Soppari, Bharath Vupperpally, Harshini Adloori, Kumar Agolu et Sujith kasula. « AI-powered early detection of neurological disease : Parkinson's disease ». International Journal of Science and Research Archive 14, no 1 (30 janvier 2025) : 278–82. https://doi.org/10.30574/ijsra.2025.14.1.0041.
Texte intégralS, Rohan, R. Subrahmanya et Vignesh M. « Parkinson’s Disease Detection using YOLO Algorithm ». INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no 12 (30 décembre 2024) : 1–9. https://doi.org/10.55041/ijsrem40409.
Texte intégralSamita Ganveer, Himani Bire, Rutuja Deshmukh, Shweta S. Salunkhe,. « Early Detection of Parkinson’s Disease Using Machine Learning ». Journal of Electrical Systems 20, no 2 (4 avril 2024) : 2255–66. http://dx.doi.org/10.52783/jes.1992.
Texte intégralAdekunle, Abiona Akeem, Oyerinde Bolarinwa Joseph et Ajinaja Micheal Olalekan. « Early Parkinson's Disease Detection Using by Machine Learning Approach ». Asian Journal of Research in Computer Science 16, no 2 (9 juin 2023) : 36–45. http://dx.doi.org/10.9734/ajrcos/2023/v16i2337.
Texte intégralMontgomery, Erwin B. « Olfaction and early detection of Parkinson's disease ». Annals of Neurology 57, no 1 (2004) : 157. http://dx.doi.org/10.1002/ana.20354.
Texte intégralI, Kalaiyarasi, Amudha P et Sivakumari S. « Parkinson\'s Disease Detection Using Deep Learning Technique ». International Journal for Research in Applied Science and Engineering Technology 11, no 5 (31 mai 2023) : 1789–96. http://dx.doi.org/10.22214/ijraset.2023.51916.
Texte intégralGeneraldo Maylem, Genica Lynne Maylem, Isaac Angelo M. Dioses, Loida Hermosura, James Bryan Tababa, Aldrin Bryan Tababa, Marc Zenus Labuguen et Dave Miracle Cabanilla. « Speech-based biomarkers for Parkinson’s disease detection and classification using AI Approach ». World Journal of Advanced Research and Reviews 25, no 2 (28 février 2025) : 2127–33. https://doi.org/10.30574/wjarr.2025.25.2.0595.
Texte intégralThèses sur le sujet "Early Detection of Parkinson's Disease"
Figueiredo, Isabel De. « Early Detection of Parkinson's Disease through Microfluidics and Ion Mobility - Mass Spectrometry Integration ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF070.
Texte intégralAlpha-synuclein is a critical biomarker for Parkinson's disease, however its early detection is challenging due to its low abundance and intrinsically disordered protein nature. The development of early diagnostic methods relies heavily on understanding and differentiating the structural characteristics of native alpha-synuclein versus its pathological forms, as these variations provide valuable insights into disease onset and progression. This Ph.D. thesis, investigates the conformational landscape of alpha-synuclein and explores techniques to capture and concentrate this protein without disrupting its structure. Two types of microfluidic devices are presented: the first device integrates a micro-immunopurification module optimized for alpha-synuclein capture and a micro-size exclusion chromatography module designed for desalting and buffer exchange to facilitate coupling with Ion Mobility-Mass Spectrometry. Additionally, an integrated 2-in-1 chip combines these modules into a single platform, streamlining the workflow for enhanced efficiency and accuracy in alpha-synuclein analysis. The coupling of these microfluidic devices with the Ion Mobility-Mass Spectrometry advances the structural characterization of alpha-synuclein, contributing to the development of early diagnostic methods by enabling the differentiation between native and pathological forms of the protein
Filali, razzouki Anas. « Deep learning-based video face-based digital markers for early detection and analysis of Parkinson disease ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2025. http://www.theses.fr/2025IPPAS002.
Texte intégralThis thesis aims to develop robust digital biomarkers for early detection of Parkinson's disease (PD) by analyzing facial videos to identify changes associated with hypomimia. In this context, we introduce new contributions to the state of the art: one based on shallow machine learning and the other on deep learning.The first method employs machine learning models that use manually extracted facial features, particularly derivatives of facial action units (AUs). These models incorporate interpretability mechanisms that explain their decision-making process for stakeholders, highlighting the most distinctive facial features for PD. We examine the influence of biological sex on these digital biomarkers, compare them against neuroimaging data and clinical scores, and use them to predict PD severity.The second method leverages deep learning to automatically extract features from raw facial videos and optical flow using foundational models based on Video Vision Transformers. To address the limited training data, we propose advanced adaptive transfer learning techniques, utilizing foundational models trained on large-scale video classification datasets. Additionally, we integrate interpretability mechanisms to clarify the relationship between automatically extracted features and manually extracted facial AUs, enhancing the comprehensibility of the model's decisions.Finally, our generated facial features are derived from both cross-sectional and longitudinal data, which provides a significant advantage over existing work. We use these recordings to analyze the progression of hypomimia over time with these digital markers, and its correlation with the progression of clinical scores.Combining these two approaches allows for a classification AUC (Area Under the Curve) of over 90%, demonstrating the efficacy of machine learning and deep learning models in detecting hypomimia in early-stage PD patients through facial videos. This research could enable continuous monitoring of hypomimia outside hospital settings via telemedicine
Taleb, Catherine. « Parkinson's desease detection by multimodal analysis combining handwriting and speech signals ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT039.
Texte intégralParkinson’s disease (PD) is a neurological disorder caused by a decreased dopamine level on the brain. This disease is characterized by motor and non-motor symptoms that worsen over time. In advanced stages of PD, clinical diagnosis is clear-cut. However, in the early stages, when the symptoms are often incomplete or subtle, the diagnosis becomes difficult and at times, the subject may remain undiagnosed. Furthermore, there are no efficient and reliable methods capable of achieving PD early diagnosis with certainty. The difficulty in early detection is a strong motivation for computer-based assessment tools/decision support tools/test instruments that can aid in the early diagnosing and predicting the progression of PD.Handwriting’s deterioration and vocal impairment may be ones of the earliest indicators for the onset of the illness. According to the reviewed literature, a language independent model to detect PD using multimodal signals has not been enough addressed. The main goal of this thesis is to build a language independent multimodal system for assessment the motor disorders in PD patients at an early stage based on combined handwriting and speech signals, using machine learning techniques. For this purpose and due to the lack of a multimodal and multilingual dataset, such database that is equally distributed between controls and PD patients was first built. The database includes handwriting, speech, and eye movements’ recordings collected from control and PD patients in two phases (“on-state” and “off-state”). In this thesis we focused on handwriting and speech analysis, where PD patients were studied in their “on-state”.Language-independent models for PD detection based on handwriting features were built; where two approaches were considered, studied and compared: a classical feature extraction and classifier approach and a deep learning approach. Approximately 97% classification accuracy was reached with both approaches. A multi-class SVM classifier for stage detection based on handwriting features was built. The achieved performance was non-satisfactory compared to the results obtained for PD detection due to many obstacles faced.Another language and task-independent acoustic feature set for assessing the motor disorders in PD patients was built. We have succeeded to build a language independent SVM model for PD diagnosis through voice analysis with 97.62% accuracy. Finally, a language independent multimodal system for PD detection by combining handwriting and voice signals was built, where both classical SVM model and deep learning models were both analyzed. A classification accuracy of 100% is obtained when handcrafted features from both modalities are combined and applied to the SVM. Despite the encouraging results obtained, there is still some works to do before putting our PD detection multimodal model into clinical use due to some limitations inherent to this thesis
Munder, Tonia [Verfasser]. « Investigation of early histopathological changes in rodent models of Alzheimer's Disease, Parkinson's Disease and CADASIL : brain magnet resonance elastography for early disease detection and staging correlated to histopathology and analysis of neurogenesis and cell survival / Tonia Munder ». Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2018. http://d-nb.info/1160514887/34.
Texte intégralMunder, Tonia Laura [Verfasser]. « Investigation of early histopathological changes in rodent models of Alzheimer's Disease, Parkinson's Disease and CADASIL : brain magnet resonance elastography for early disease detection and staging correlated to histopathology and analysis of neurogenesis and cell survival / Tonia Munder ». Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2018. http://d-nb.info/1160514887/34.
Texte intégralKonstantopoulos, Konstantinos. « Dysarthria in early Parkinson's disease ». Thesis, University College London (University of London), 2004. http://discovery.ucl.ac.uk/10055767/.
Texte intégralKudlicka, Aleksandra Katarzyna. « Executive functioning in early stage Parkinson's disease ». Thesis, Bangor University, 2013. https://research.bangor.ac.uk/portal/en/theses/executive-functioning-in-early-stage-parkinsons-disease(4985b570-fd51-48ba-8c39-f377b5e2edf0).html.
Texte intégralPursiainen, V. (Ville). « Autonomic dysfunction in early and advanced Parkinson's disease ». Doctoral thesis, University of Oulu, 2007. http://urn.fi/urn:isbn:9789514283888.
Texte intégralSzewczyk-Krolikowski, Konrad. « Clinical and imaging characteristics of early Parkinson's disease ». Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:c118f620-19a9-4d0c-bcfc-018e3dd9ff3d.
Texte intégralSaad, Ali. « Detection of Freezing of Gait in Parkinson's disease ». Thesis, Le Havre, 2016. http://www.theses.fr/2016LEHA0029/document.
Texte intégralFreezing of Gait (FoG) is an episodic phenomenon that is a common symptom of Parkinson's disease (PD). This research is headed toward implementing a detection, diagnosis and correction system that prevents FoG episodes using a multi-sensor device. This particular study aims to detect/diagnose FoG using different machine learning approaches. In this study we validate the choice of integrating multiple sensors to detect FoG with better performance. Our first level of contribution is introducing new types of sensors for the detection of FoG (telemeter and goniometer). An advantage in our work is that due to the inconsistency of FoG events, the extracted features from all sensors are combined using the Principal Component Analysis technique. The second level of contribution is implementing a new detection algorithm in the field of FoG detection, which is the Gaussian Neural Network algorithm. The third level of contribution is developing a probabilistic modeling approach based on Bayesian Belief Networks that is able to diagnosis the behavioral walking change of patients before, during and after a freezing event. Our final level of contribution is utilizing tree-structured Bayesian Networks to build a global model that links and diagnoses multiple Parkinson's disease symptoms such as FoG, handwriting, and speech. To achieve our goals, clinical data are acquired from patients diagnosed with PD. The acquired data are subjected to effective time and frequency feature extraction then introduced to the different detection/diagnosis approaches. The used detection methods are able to detect 100% of the present appearances of FoG episodes. The classification performances of our approaches are studied thoroughly and the accuracy of all methodologies is considered carefully and evaluated
Livres sur le sujet "Early Detection of Parkinson's Disease"
E, Lyons Kelly, dir. Management of early Parkinson's disease. [Oxford] : Oxford University Press, 2009.
Trouver le texte intégralP, Dostert, Erbamont Inc et Fondazione Carlo Erba, dir. Early markers in Parkinson's and Alzheimer's diseases. Wien : Springer-Verlag, 1990.
Trouver le texte intégralCarlos, Kaski Juan, et Holt David W, dir. Myocardial damage : Early detection by novel biochemical markers. Dordrecht : Kluwer Academic, 1998.
Trouver le texte intégral1933-, Fahn Stanley, dir. Parlodel® (bromocriptine mesylate) in the early management of Parkinson's disease : Excerpts from Recent developments in Parkinson's disease, volume 2. Florham Park, N.J : Macmillan Healthcare Information, 1987.
Trouver le texte intégralMcCarthy, Joseph C. Early hip disorders : Advances in detection and minimally invasive treatment. New York : Springer, 2011.
Trouver le texte intégralname, No. Early hip disorders : Advances in detection and minimally invasive treatment. New York, NY : Springer, 2003.
Trouver le texte intégraleditor, Mordini E. (Emilio), et Green Manfred editor, dir. Internet-based intelligence in public health emergencies : Early detection and response in disease outbreak crises. Amsterdam, Netherlands : IOS Press, 2011.
Trouver le texte intégralLong, Katrina M. Pre-active PD : A Therapist Delivered Physical Activity Behavior Change Program for People With Early Stage Parkinson's Disease. [New York, N.Y.?] : [publisher not identified], 2020.
Trouver le texte intégralFitzgerald, Rebecca C. Pre-invasive disease : Pathogenesis and clinical management. New York : Springer, 2011.
Trouver le texte intégralChristophe, Trivalle, dir. Gérontologie préventive : Éléments de prévention du vieillissement pathologique. Paris : Masson, 2002.
Trouver le texte intégralChapitres de livres sur le sujet "Early Detection of Parkinson's Disease"
Cotogni, Marco, Lucia Sacchi, Dejan Georgiev et Aleksander Sadikov. « Detection of Parkinson's Disease Early Progressors Using Routine Clinical Predictors ». Dans Artificial Intelligence in Medicine, 163–67. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77211-6_18.
Texte intégralDostert, P., M. Strolin Benedetti et G. Dordain. « Salsolinol and the early detection of Parkinson’s disease ». Dans New Vistas in Drug Research, 93–97. Vienna : Springer Vienna, 1990. http://dx.doi.org/10.1007/978-3-7091-9098-2_11.
Texte intégralAgarwal, Priyal, Vipin Talreja, Rutuja Patil, Vaishnavi Jadhav et Indu Dokare. « Early Detection of Parkinson’s Disease Using Spiral Test ». Dans Data-Intensive Research, 391–402. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9179-2_30.
Texte intégralTandon, Sabina, et Saurav Verma. « Early Detection of Parkinson’s Disease Using Computer Vision ». Dans Data Management, Analytics and Innovation, 199–208. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2937-2_15.
Texte intégralBansal, Mohit, Satya Jeet Raj Upali et Sukesha Sharma. « Early Parkinson Disease Detection Using Audio Signal Processing ». Dans Emerging Technologies in Data Mining and Information Security, 243–50. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4193-1_23.
Texte intégralBoucherouite, Jihad, Abdelilah Jilbab et Atman Jbari. « Automatic SPECT Image Processing for Parkinson’s Disease Early Detection ». Dans Communications in Computer and Information Science, 17–23. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20490-6_2.
Texte intégralTaleb, Catherine, Laurence Likforman-Sulem et Chafic Mokbel. « Language-Independent Bimodal System for Early Parkinson’s Disease Detection ». Dans Document Analysis and Recognition – ICDAR 2021, 397–413. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86334-0_26.
Texte intégralFaouzi, Johann, Olivier Colliot et Jean-Christophe Corvol. « Machine Learning for Parkinson’s Disease and Related Disorders ». Dans Machine Learning for Brain Disorders, 847–77. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3195-9_26.
Texte intégralBasnin, Nanziba, Tahmina Akter Sumi, Mohammad Shahadat Hossain et Karl Andersson. « Early Detection of Parkinson’s Disease from Micrographic Static Hand Drawings ». Dans Brain Informatics, 433–47. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86993-9_39.
Texte intégralSanyal, Saptarsi, Shanmugarathinam et Naveen Vijayakumar Watson. « PDEDX : A Comprehensive Expert System for Early Detection of Parkinson’s Disease ». Dans Lecture Notes in Networks and Systems, 397–406. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2671-4_30.
Texte intégralActes de conférences sur le sujet "Early Detection of Parkinson's Disease"
P, Anandha Ponni, Avaniya Seireena et Shiny R. M. « Early Detection of Parkinson's Disease Through Vocal Features ». Dans 2025 International Conference on Multi-Agent Systems for Collaborative Intelligence (ICMSCI), 1214–19. IEEE, 2025. https://doi.org/10.1109/icmsci62561.2025.10894297.
Texte intégralSaideepthi, Pabba, Sravanthi Kollimarla, Pramod Gaur, Ashish Gupta et Siddhaling Urolagin. « Automated Early Detection of Parkinson's Disease Using Graph Convolution Networks ». Dans 2024 International Conference on Computational Intelligence and Network Systems (CINS), 1–6. IEEE, 2024. https://doi.org/10.1109/cins63881.2024.10864454.
Texte intégralCabrera, Marjorie, Kevin Sánchez et Manuel Cardona. « Hand Tracker for the Early Detection of Neurodegenerative Parkinson's Disease ». Dans 2024 IEEE Central America and Panama Student Conference (CONESCAPAN), 1–6. IEEE, 2024. https://doi.org/10.1109/conescapan62181.2024.10891121.
Texte intégralDevi, S. Vijaya Amala, K. Vijayalakshmi, R. Santhana Krishnan, J. Relin Francis Raj, R. Umesh et N. Soundiraraj. « Hybrid Deep Learning Methods for Enhancing Parkinson's Disease Early Detection ». Dans 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL), 1462–69. IEEE, 2025. https://doi.org/10.1109/icsadl65848.2025.10933259.
Texte intégralLakkshmanan, Ajanthaa, Venna Venkata Karthik et Javvadi Prabhas. « Early Detection of Parkinson's Disease Through Predictive Analytics and Machine Learning ». Dans 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA), 867–74. IEEE, 2024. https://doi.org/10.1109/icscna63714.2024.10864118.
Texte intégralPariselvam, S., S. Ashok Kumar, R. Sathishkumar, M. Govindarajan, C. Mukeshkumar et R. Avinash Raj. « Enhanced Early Parkinson's Disease Detection Using Resnet-101 Based on MRI Images ». Dans 2024 International Conference on System, Computation, Automation and Networking (ICSCAN), 1–5. IEEE, 2024. https://doi.org/10.1109/icscan62807.2024.10894502.
Texte intégralRazzouki, Anas Filali, Laetitia Jeancolas, Graziella Mangone, Sara Sambin, Alizé Chalançon, Manon Gomes, Stéphane Lehéricy et al. « Early-Stage Parkinson's Disease Detection Based on Optical Flow and Video Vision Transformer ». Dans 2024 16th International Conference on Human System Interaction (HSI), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/hsi61632.2024.10613585.
Texte intégralPrafulla, P. S., H. C. Sahana, K. Shwetha, M. N. Anusha, K. Prabhavathi et S. N. Shwetha. « Machine Learning Technique for early Parkinson’s Disease Detection ». Dans 2024 International Conference on Recent Advances in Science and Engineering Technology (ICRASET), 1–6. IEEE, 2024. https://doi.org/10.1109/icraset63057.2024.10894963.
Texte intégralNandankar, Praful V., Arnav Kothiyal, Kiran Kumar D, Anuradha Patil, Harshal Patil et Ramya Maranan. « Parkinson's Disease Early Detection and Classification based on EMG Signal using Spherical Convolutional Neural Network ». Dans 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 1140–46. IEEE, 2024. http://dx.doi.org/10.1109/i-smac61858.2024.10714636.
Texte intégralZebidi, Hadjer, Zeineb BenMessaoud et Mondher Frikha. « A Comparative and Explainable Study of Machine Learning Models for Early Detection of Parkinson's Disease Using Spectrograms ». Dans 14th International Conference on Pattern Recognition Applications and Methods, 272–82. SCITEPRESS - Science and Technology Publications, 2025. https://doi.org/10.5220/0013183900003905.
Texte intégralRapports d'organisations sur le sujet "Early Detection of Parkinson's Disease"
Doty, Richard L., Jacob Dubroff, Gui-Shang Ying, Thelma E. McCloskey, James Wilson, Jennifer Rotz, Michele Morris, James W. Hall, Neil T. Shepard et Allen Osman. Sensory Dysfunction in Early Parkinson's Disease. Fort Belvoir, VA : Defense Technical Information Center, juillet 2011. http://dx.doi.org/10.21236/ada550800.
Texte intégralChristian Agudelo, Christian Agudelo. Physical experience of emotion : an early marker of Parkinson's Disease ? Experiment, mai 2013. http://dx.doi.org/10.18258/0471.
Texte intégralWu, Meiye, Ryan Wesley Davis et Anson Hatch. Portable microfluidic raman system for rapid, label-free early disease signature detection. Office of Scientific and Technical Information (OSTI), septembre 2015. http://dx.doi.org/10.2172/1222536.
Texte intégralRostaminejad, Marzieh. Early Diagnosis of Alzheimer's disease using Electrochemical-based Nanobiosensors for miRNA Detection. Peeref, juillet 2022. http://dx.doi.org/10.54985/peeref.2207p6024343.
Texte intégralDeshpande, Alina. RED Alert – Early warning or detection of global re-emerging infectious disease (RED). Office of Scientific and Technical Information (OSTI), juillet 2016. http://dx.doi.org/10.2172/1261795.
Texte intégralTang, Xiangyang. Early Detection of Amyloid Plaque in Alzheimer's Disease via X-Ray Phase CT. Fort Belvoir, VA : Defense Technical Information Center, juin 2014. http://dx.doi.org/10.21236/ada612057.
Texte intégralTang, Xiangyang. Early Detection of Amyloid Plaque in Alzheimer's Disease via X-Ray Phase CT. Fort Belvoir, VA : Defense Technical Information Center, juin 2013. http://dx.doi.org/10.21236/ada582946.
Texte intégralTang, Xiangyang. Early Detection of Amyloid Plaque in Alzheimer's Disease Via X-ray Phase CT. Fort Belvoir, VA : Defense Technical Information Center, juin 2015. http://dx.doi.org/10.21236/ada620373.
Texte intégralLi, Jiangwei. Applications of a single-molecule detection in early disease diagnosis and enzymatic reaction study. Office of Scientific and Technical Information (OSTI), janvier 2008. http://dx.doi.org/10.2172/964365.
Texte intégralGabrieli, John D. SPECT and fMRI Analysis of Motor and Cognitive Indices of Early Parkinson's Disease : The Relationship of Striatal Dopamine and Cortical Function. Fort Belvoir, VA : Defense Technical Information Center, octobre 2001. http://dx.doi.org/10.21236/ada406147.
Texte intégral