Littérature scientifique sur le sujet « Elastic boundary condition »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Elastic boundary condition ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Elastic boundary condition"
Randall, C. J. « Absorbing boundary condition for the elastic wave equation ». GEOPHYSICS 53, no 5 (mai 1988) : 611–24. http://dx.doi.org/10.1190/1.1442496.
Texte intégralZhao, Zhencong, Jingyi Chen, Xiaobo Liu et Baorui Chen. « Frequency-domain elastic wavefield simulation with hybrid absorbing boundary conditions ». Journal of Geophysics and Engineering 16, no 4 (1 août 2019) : 690–706. http://dx.doi.org/10.1093/jge/gxz038.
Texte intégralKeller, Joseph B., et Marcus J. Grote. « Exact Nonreflecting Boundary Condition For Elastic Waves ». SIAM Journal on Applied Mathematics 60, no 3 (janvier 2000) : 803–19. http://dx.doi.org/10.1137/s0036139998344222.
Texte intégralTaylor, Adam G., et Jae H. Chung. « Analysis of tangential contact boundary value problems using potential functions ». Royal Society Open Science 6, no 3 (mars 2019) : 182106. http://dx.doi.org/10.1098/rsos.182106.
Texte intégralLANGE, A., J. ZHOU et N. SAFFARI. « OPTIMISED ABSORBING BOUNDARY CONDITIONS FOR ELASTIC-WAVE PROPAGATION ». Journal of Computational Acoustics 09, no 03 (septembre 2001) : 1005–14. http://dx.doi.org/10.1142/s0218396x01001091.
Texte intégralPeng, Chengbin, et M. Nafi Toksöz. « An optimal absorbing boundary condition for elastic wave modeling ». GEOPHYSICS 60, no 1 (janvier 1995) : 296–301. http://dx.doi.org/10.1190/1.1443758.
Texte intégralYin, Yuhan, et Juan Liu. « Hybrid Method for Inverse Elastic Obstacle Scattering Problems ». Mathematics 11, no 8 (20 avril 2023) : 1939. http://dx.doi.org/10.3390/math11081939.
Texte intégralBen-Haim, Yakov, et H. G. Natke. « Sequential Adaptation in Estimating Elastic Boundary-Condition Influence Matrices ». Journal of Dynamic Systems, Measurement, and Control 115, no 3 (1 septembre 1993) : 370–78. http://dx.doi.org/10.1115/1.2899112.
Texte intégralMittet, Rune. « Implementation of the Kirchhoff integral for elastic waves in staggered‐grid modeling schemes ». GEOPHYSICS 59, no 12 (décembre 1994) : 1894–901. http://dx.doi.org/10.1190/1.1443576.
Texte intégralYurchuk, V. M., et S. V. Sinchilo. « Torsional elastic waves. Some aspects of nonlinear analysis ». Bulletin of Taras Shevchenko National University of Kyiv. Series : Physics and Mathematics, no 2 (2023) : 172–75. http://dx.doi.org/10.17721/1812-5409.2023/2.31.
Texte intégralThèses sur le sujet "Elastic boundary condition"
Khatla, Wissem-Eddine. « Écoulements modèles de films minces géo-inspirés : étalement et coalescence de cloques visqueuses ». Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS060.
Texte intégralIn this project, we propose a series of laboratory-scale model experiments to explore the dynamics and instabilities of geophysically inspired thin liquid films.We are studying phenomena similar to laccoliths, where magma flow deforms the surrounding rock layers. In the limit where their height is very small compared to their horizontal size, these dynamic formations can be reasonably compared to thin liquid blisters covered by an elastic film. We thus propose to revisit classical experiments on free-surface drop dynamics by modifying the boundary condition imposed by the nature of the interface.What is the shape and dynamics of a fluid pocket trapped beneath an elastic membrane? How does the coalescence of two adjacent pockets proceed under this new boundary condition? How are dynamic spreading regimes affected?To answer these questions, we set up an experimental device to observe and characterize this spreading phenomenon, using demodulation techniques that we adapted to our configuration.We inject vegetable oil, at a controlled flow rate, through a PMMA plate onto which we deposit an elastic film of millimetric thickness. We are studying three main configurations:1 Spreading of a single viscous blister.2 The coalescence of two identical blisters.3 A Rayleigh-Taylor instability in the presence of an elastic membrane.For each configuration studied, we begin by reconstructing the general shape of the blisters obtained and map their height field over time. We show the presence of several expansion regimes that evolve according to precise power laws, which we verify both theoretically and experimentally. For the first two studies, we systematically attempt to fit the shape of each regime to an associated self-similar behavior.To complement this dual approach, a numerical analysis was also developed for comparison with the experimental data obtained for the different configurations tested
Braun, Michael Rainer. « Characterization of nonlinearity parameters in an elastic material with quadratic nonlinearity with a complex wave field ». Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26566.
Texte intégralCommittee Chair: Jacobs, Laurence; Committee Co-Chair: Qu, Jianmin; Committee Member: DesRoches, Reginald. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Tjandrawidjaja, Yohanes. « Some contributions to the analysis of the Half-Space Matching Method for scattering problems and extension to 3D elastic plates ». Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLY012.
Texte intégralThis thesis focuses on the Half-Space Matching Method which was developed to treat some scattering problems in complex infinite domains, when usual numerical methods are not applicable. In 2D, it consists in coupling several plane-wave representations in half-spaces surrounding the obstacle(s) with a Finite Element computation of the solution in a bounded domain. To ensure the matching of all these representations, the traces of the solution are linked by Fourier-integral equations set on the infinite boundaries of the half-spaces. In the case of a dissipative medium, this system of integral equations was proved to be coercive plus compact in an L² framework.In the present thesis, we derive error estimates with respect to the discretization parameters (both in space and Fourier variables). To handle the non-dissipative case, we propose a modified version of the Half-Space Matching Method, which is obtained by applying a complex-scaling to the unknowns, in order to recover the L² framework.We then extend the Half-Space Matching Method to scattering problems in infinite 3D elastic plates for applications to Non-Destructive Testing. The additional complexity compared to the 2D case comes from the decomposition on Lamb modes used in the half-plate representations. Due to the bi-orthogonality relation of Lamb modes, we have to consider as unknowns not only the displacement, but also the normal stress on the infinite bands limiting the half-plates. Some theoretical questions concerning this multi-unknown formulation involving the trace and the normal trace are studied in a 2D scalar case. Connections with integral methods are also addressed in the case where the Green's function is known, at least partially in each subdomain.The different versions of the method have been implemented in the library XLiFE++ and numerical results are presented for both 2D and 3D cases
Schmidt, Andreas [Verfasser], Reinhard [Akademischer Betreuer] Farwig et Mads [Akademischer Betreuer] Kyed. « The Navier-Stokes Equations with Elastic Boundary and Boundary Conditions of Friction Type / Andreas Schmidt ; Reinhard Farwig, Mads Kyed ». Darmstadt : Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1236344863/34.
Texte intégralDydo, James R. « Development of efficient solutions to elastic contact problems with various non-infinite boundary conditions / ». The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487844948076341.
Texte intégralVenter, Gerhardus. « Sensitivity analysis with respect to elastic boundary conditions and laser spatial variables within experimental spatial dynamic modeling ». Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-01102009-063257/.
Texte intégralCrooks, Matthew Stuart. « Application of an elasto-plastic continuum model to problems in geophysics ». Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/application-of-an-elastoplastic-continuum-model-to-problems-in-geophysics(56bc2269-3eb2-47f9-8482-b62e8e053b76).html.
Texte intégralCroënne, C., J. O. Vasseur, Matar O. Bou, M. F. Ponge, P. A. Deymier, A. C. Hladky-Hennion et B. Dubus. « Brillouin scattering-like effect and non-reciprocal propagation of elastic waves due to spatio-temporal modulation of electrical boundary conditions in piezoelectric media ». AMER INST PHYSICS, 2017. http://hdl.handle.net/10150/623049.
Texte intégralBouzaher, Abdallah. « Réseau bipériodique de dislocations d'hétéro-interface en élasticité anisotrope ». Grenoble INPG, 1993. http://www.theses.fr/1993INPG0089.
Texte intégralBrenot, Dominique. « Transmission du son à l'intérieur d'une structure axisymétrique ». Paris 6, 1986. http://www.theses.fr/1986PA066022.
Texte intégralLivres sur le sujet "Elastic boundary condition"
United States. National Aeronautics and Space Administration., dir. The Schwinger variational method. [Washington, DC : National Aeronautics and Space Administration, 1995.
Trouver le texte intégralSerikov, Sergey. Impact on impact strength. ru : INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/2161513.
Texte intégralChapitres de livres sur le sujet "Elastic boundary condition"
Arnold, Anton, et Matthias Ehrhardt. « A Transparent Boundary Condition for an Elastic Bottom in Underwater Acoustics ». Dans Finite Difference Methods,Theory and Applications, 15–24. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20239-6_2.
Texte intégralLu, Guo Yun, et Shan Yuan Zhang. « Elastic-Plastic Dynamic Response of the Tube with Free Boundary Condition Subjected to Impact ». Dans Engineering Plasticity and Its Applications, 263–68. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-433-2.263.
Texte intégralBare, Z., J. Orlik et G. Panasenko. « Asymptotic Approximations of a Thin Elastic Beam with Auxiliary Coupled 1D System due to Robin Boundary Condition ». Dans Trends in Mathematics, 637–48. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12577-0_69.
Texte intégralBracamonte, Johane, John S. Wilson et Joao S. Soares. « Modeling Patient-Specific Periaortic Interactions with Static and Dynamic Structures Using a Moving Heterogeneous Elastic Foundation Boundary Condition ». Dans Functional Imaging and Modeling of the Heart, 315–27. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78710-3_31.
Texte intégralFridman, Vladimir. « Discontinuous Functions. Complicated Boundary Conditions ». Dans Theory of Elastic Oscillations, 123–39. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4786-2_6.
Texte intégralThomson, Gavin R., et Christian Constanda. « Problems with Robin Boundary Conditions ». Dans Stationary Oscillations of Elastic Plates, 153–75. Boston : Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8241-5_9.
Texte intégralSantos, Juan Enrique, et Patricia Mercedes Gauzellino. « Absorbing boundary conditions in elastic and poroelastic media ». Dans Numerical Simulation in Applied Geophysics, 97–119. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48457-0_5.
Texte intégralBarishpolsky, B. M. « Analysis of Generalized Elastic Problems with Superfluous Boundary Conditions ». Dans Computational Mechanics ’88, 1359–62. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61381-4_360.
Texte intégralJiang, Zhongyu, Yajun Zhang, Huaqing Liu et Xuanxuan Li. « Symplectic Elastic Solution of Multi-layer Thick-Walled Cylinder Under Different Interlayer Constraints ». Dans Lecture Notes in Civil Engineering, 238–53. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_21.
Texte intégralSofronov, I. L., et N. A. Zaitsev. « Transparent Boundary Conditions for the Elastic Waves in Anisotropic Media ». Dans Hyperbolic Problems : Theory, Numerics, Applications, 997–1004. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75712-2_105.
Texte intégralActes de conférences sur le sujet "Elastic boundary condition"
Kimura, K., K. Sawada et H. Kushima. « Long-Term Creep Strength Property of Advanced Ferritic Creep Resistant Steels ». Dans AM-EPRI 2010, sous la direction de D. Gandy, J. Shingledecker et R. Viswanathan, 732–51. ASM International, 2010. http://dx.doi.org/10.31399/asm.cp.am-epri-2010p0732.
Texte intégralPeng, Chengbin, et M. Nafi Toksöz. « An optimal absorbing boundary condition for elastic wave modeling ». Dans SEG Technical Program Expanded Abstracts 1993. Society of Exploration Geophysicists, 1993. http://dx.doi.org/10.1190/1.1822294.
Texte intégralMin, D. J., C. Shin, H. S. Yoo, J. K. Hong et M. K. Park. « Free Surface Boundary Condition in Finite-Difference Elastic Wave Modeling ». Dans 64th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2002. http://dx.doi.org/10.3997/2214-4609-pdb.5.p264.
Texte intégralKim, Minsu, Yongjun Lee, Woo Kyoung Han et Kyong Hwan Jin. « Learning Residual Elastic Warps for Image Stitching under Dirichlet Boundary Condition ». Dans 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2024. http://dx.doi.org/10.1109/wacv57701.2024.00397.
Texte intégralDu*, Qizhen, Mingqiang Zhang, Gang Fang, Xufei Gong et Chengfeng Guo. « Relatively amplitude-preserved ADCIGs based on elastic RTM by modifying the initial condition as the boundary condition ». Dans SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-0448.1.
Texte intégralPonce‐Correa, Gustavo J., et John C. Mutter. « A free boundary condition for the elastic wave equation in the pseudospectral method ». Dans SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists, 1997. http://dx.doi.org/10.1190/1.1885693.
Texte intégralSadasivam, Balaji, Alpay Hizal et Dwayne Arola. « Abrasive Waterjet Peening With Elastic Prestress : Effect of Boundary Conditions ». Dans ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67547.
Texte intégralXu, Tian, et Yong Lei. « Identification of Young’s Modulus and Equivalent Spring Constraint Boundary Conditions of the Object With Incomplete Displacement Boundary Conditions ». Dans ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8396.
Texte intégralXie, Xiao‐Bi, et Ru‐Shan Wu. « Free surface boundary condition and the source term for one‐way elastic wave method ». Dans SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists, 1997. http://dx.doi.org/10.1190/1.1885799.
Texte intégralLiu, Yang, et Mrinal K. Sen. « A hybrid absorbing boundary condition for elastic wave modeling with staggered‐grid finite difference ». Dans SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 2010. http://dx.doi.org/10.1190/1.3513458.
Texte intégral