Thèses sur le sujet « Electrodos de platino »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Electrodos de platino ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Arán-Ais, Rosa M. « Interfacial reactivity : model surfaces and tailored shape-controlled nanocatalysts ». Doctoral thesis, Universidad de Alicante, 2016. http://hdl.handle.net/10045/70091.
Texte intégralMyedi, Noluthando. « Electrochemical kinetics and sensing of conjugated dienes in acetonitrile ». University of the Western Cape, 2011. http://hdl.handle.net/11394/5424.
Texte intégralThis thesis focuses on the electroanalysis of some dienes (2-methyl-1.3-butadiene (MBD), tran-1.3-pentadiene (PD), 1.3-cyclohexadiene (CHD) and 3-cyclooctadiene (COD)) found in gasoline and the development of simple electrochemical diene sensors. The detection of dienes in fuels is important as they readily polymerise and form gum in fuel tanks. The electroctivity of the dienes was studied with glassy carbon electrode (GCE) and Pt electrode in tetrabutylammonium perchlorate (TBAP)/acetonitrile solution. Polyaniline-polystyrene sulfonic acid (PANi-PSSA) composite films were electro-deposited or drop-coated on GCE, with and without gold nanoparticles (AuNPs) and characterized by cyclic voltammetry (CV), high resolution transmission electron microscopy (HRTEM) and ultraviolet-visible (UV-vis) spectroscopy. Both composite polymers were found to be of nanofibral structure, and the spherical gold nanoparticles were dispersed uniformly within the polymer. The dienes exhibited no redox peaks on GCE/PANi-PSSA and GCE/PANi-PSSA/AuNPs electrode systems from -1.0 V to +1.5 V, beyond which PANi would overoxidize and lose its electroactivity. Therefore, cyclic voltammetry and steady state amperometry of the four dienes (MBD, PD, CHD and COD) were studied with unmodified Pt and GCE electrodes. Subtractively normalised interfacial-fourier transform infra-red (SNIFTIR) spectroscopic studies of the dienes were performed with Pt electrode. SNIFTIR data showed that there was a definite electro-oxidation of 1.3-cyclohexadiene as electrode potential was changed from E = 770 mV to E = 1638 mV. Severe electrode fouling was observed when steady state amperometric detection of CHD, as a representative diene, was performed on Pt electrode. Randel-Sevčik analysis of the CVs of the dienes on Pt electrode gave diffusion coefficient (Dox) values of 10.65 cm²/s, 9.55 cm²/s, 3.20 cm²/s and 3.96 cm²/s for CHD, COD, PD, and MBD, respectively. The corresponding detection limits (3σn-1) were 0.0106 M, 0.0111 M, 0.0109 M, and 0.0107 M.
Briega-Martos, Valentín. « Unraveling the oxygen reduction reaction mechanism : occurrence of a bifurcation point before hydrogen peroxide formation ». Doctoral thesis, Universidad de Alicante, 2019. http://hdl.handle.net/10045/102311.
Texte intégralKhanfar, Mohammad F. « Molybdenum-modified platinum electrodes / ». Internet access available to MUN users only, 2003. http://collections.mun.ca/u?/theses,160874.
Texte intégralKoda, Ryo. « Electrochemical deposition of metal on microporous silicon electrodes influenced by hydration structures of solutes and electrode surfaces ». 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199323.
Texte intégralMorimoto, Yu. « Electrochemical oxidation of methanol on platinum and platinum based electrodes ». Case Western Reserve University School of Graduate Studies / OhioLINK, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=case1058206604.
Texte intégralRudge, Andrew John. « The photoelectrochemistry of platinum ». Thesis, University of Southampton, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358597.
Texte intégralAixill, W. Joanne. « Electrode processes ». Thesis, University of Oxford, 1998. http://ora.ox.ac.uk/objects/uuid:9578fd22-42fe-41cc-9d92-96f8272956d8.
Texte intégralJayaratna, Husantha G. « Stripping/plating analysis at carbon and metallic interdigitated electrodes / ». The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487848078449337.
Texte intégralPegg, David John. « Structural and chemical promotion of platinum electrodes ». Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242320.
Texte intégralSandoval, Andrea P. « Reacciones electroquímicas modelo en la interfaz líquido iónico-electrodo monocristalino de platino ». Doctoral thesis, Universidad de Alicante, 2015. http://hdl.handle.net/10045/53433.
Texte intégralSheppard, Sally-Ann. « Characterisation of dispersed, platinum-coated fuel cell electrodes ». Thesis, University of Portsmouth, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264837.
Texte intégralSanchez, Pablo Lozano. « Fabrication and electroanalytical properties of mesoporous platinum electrodes ». Thesis, University of Reading, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413929.
Texte intégralClark, Stacey L. « Sonovoltammetric detection of cadmium (II) at mercury thin film electrodes ». Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1422.
Texte intégralTitle from document title page. Document formatted into pages; contains vii, 57 p. : ill. Includes abstract. Includes bibliographical references (p. 55-57).
Ahmed, Mujib. « An electrochemical study of well-defined nafion coated platinum and platinum-bimetallic electrodes ». Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/42261/.
Texte intégralBrew, Ashley. « Electrochemical studies of the oxygen reduction reaction : platinum and platinum bimetallic single crystal electrodes ». Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/88050/.
Texte intégralHudak, Eric Michael. « Electrochemical Evaluation of Platinum and Diamond Electrodes for Neural Stimulation ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1301967862.
Texte intégralLin, Zhan. « Platinum and Platinum Alloy-Carbon Nanofiber Composites for Use as Electrodes in Direct Methanol Fuel Cells ». NCSU, 2010. http://www.lib.ncsu.edu/theses/available/etd-03312010-171722/.
Texte intégralNoh, Tae-Geun. « Spatiotemporal pattern formation in the electro-oxidation of formic acid on Pt effect of electrode geometry and lowered symmetry / ». [S.l. : s.n.], 2005. http://www.diss.fu-berlin.de/2005/108/index.html.
Texte intégralMougenot, Mathieu. « Elaboration et optimisation d'électrodes de piles PEMFC à très faible taux de platine par pulvérisation plasma ». Phd thesis, Université d'Orléans, 2011. http://tel.archives-ouvertes.fr/tel-00667739.
Texte intégralSinger, Simcha Lev. « Low platinum loading electrospun electrodes for proton exchange membrane fuel cells ». Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38280.
Texte intégralIncludes bibliographical references (p. 104-106).
An experimental study was performed to evaluate the utility of electrospun carbon nanofiber supports for sputtered platinum catalyst in proton exchange membrane fuel cells. The performance of the sputtered nanofiber supports was similar to that of sputtered commercial gas diffusion layers in single cell fuel cell tests. However, sputtered platinum electrodes performed significantly worse than commercial thin film electrodes due to high activation and concentration voltage losses. Cyclic voltammetry and rotating disc electrode experiments were performed in order to evaluate the influence of platinum loading and particle size on the electrochemical active area and oxygen reduction performance of the sputtered platinum. Active area per weight catalyst decreased with sputtering time, and the oxygen reduction activity slightly increases with increasing sputtering time. Both of these effects are thought to be due to increasing platinum particle size as sputtering time is increased.
by Simcha Lev Singer.
S.M.
Hunter, Katherine. « Fundamental studies of electrochemical oxide formation on platinum single crystal electrodes ». Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/100871/.
Texte intégralWilliams, Mario. « Characterization of platinum-group metal nanophase electrocatalysts employed in the direct methanol fuel cell and solid-polymer electrolyte electrolyser ». Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Texte intégralBauer, Alexander Günter. « Direct methanol fuel cell with extended reaction zone anode : PtRu and PtRuMo supported on fibrous carbon ». Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/913.
Texte intégralHogarth, Martin P. « The development of the direct methanol fuel cell ». Thesis, University of Newcastle Upon Tyne, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295055.
Texte intégralAbaoud, Hassan Abdulaziz. « Studies on proton exchange membrane fuel cells with low platinum loading electrodes ». Thesis, Cranfield University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.422711.
Texte intégralMaxakato, Nobanathi Wendy. « Electrocatalysis of fuel cell molecules on carbon nanotube platinum-ruthenium based electrodes ». Thesis, University of Pretoria, 2012. http://hdl.handle.net/2263/30786.
Texte intégralThesis (PhD)--University of Pretoria, 2012.
Chemistry
Unrestricted
Olivera, Bernat. « Electronic transport in metals at the atomic scale : capacitance emergent magnetism and f-electrons influence ». Doctoral thesis, Universidad de Alicante, 2017. http://hdl.handle.net/10045/73051.
Texte intégralFoster, Simon Edward. « Routes to interfacial deposition of platinum microparticles in solid polymer fuel cells ». Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/28053.
Texte intégralMayedwa, Noluthando. « Development of platino-iridium/ruthenium telluride nanoalloy electrode systems for possible application in ammonia fuel cell ». University of the Western Cape, 2015. http://hdl.handle.net/11394/5018.
Texte intégralSouth Africa is undergoing a serious consideration of hydrogen economy in an effort to develop safe clean and reliable alternative energy sources for fossil fuels. Ammonia is one of the promising candidates due to its low production cost, ease in liquefaction at ambient temperatures, and high energy density as compared to methanol. Ammonia has a high content of hydrogen atoms per unit volume and can easily be cracked down into hydrogen and nitrogen. In the last four years carbon intensive coal dependent South Africa has become one of the leading global destinations for renewable energy investment. Another driving force behind the technology is the prevalence of platinum reserves found in South Africa. Platinum group metals are the key catalytic materials used in most fuel cells, and with more than 75 % of the world’s known platinum reserves found within South Africa. In this thesis, I have developed novel electrocatalysts that are highly specific and selective for production of hydrogen using ammonia as a fuel source. The electro-oxidation of ammonia on platinum electrode drop coated platinum nanoparticles (PtNP), platinum iridium nanoparticles (PtIrNP), platinum ruthenium nanoparticles (PtRuNP), platinum telluride nanoparticles (PtTeNP) and ternary nanoparticles (PtIrTeNP) finally (PtRuTeNP) was systematically studied in alkaline solution of potassium hydroxide (KOH) by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrocatalysts were synthesised using sodium borohydride as a reducing agent and polyvinylpyrrolidone (PVP) as a stabilising agent from aqueous solutions of H2PtCl6/IrCl3/RuCl3/NaHTe mixtures. XRD confirmed that the binary and ternary electro-catalyst displayed characteristic patterns which indicated that all catalysts have shown the Pt face-centred-cubic (fcc) crystal structure and that the nanoparticles were poly-orientated. The structural characterization was further confirmed with FTIR and UV-vis, FTIR showed the most striking evidence that the PVP stabilized Pt presented a broad peak between 1288 cm-1 and 1638 cm‐1 which corresponded to C‐N stretching motion and C=O stretching motion of monomer for PVP, respectively. The narrow absorption peak centered at 1420 cm‐1 and 2880 cm‐1 occurred in which was ascribed to the C–H bonding due to the presence of PVP. This was due to the formation of coordinate bond between the nitrogen atom of the PVP and the Pt2+, Ir3+, Ru3+ and Te2+ ions. UV-vis was able to show the oxidation state of the nanoparticles and obtained an exponential graph shape which indicated complete reduction because there was no peak observed. Morphological characterization in the form of high resolution scanning electron microscope (HRSEM) revealed the formation of poly-orientated nanoparticles with average particle size of 23- 46 nm with slightly aggregated crystalline materials. The elemental composition of the alloy nanoparticles measured using energy dispersive spectroscopy (EDS) showed the presence of the four elements; Pt, Ir, Ru and Te. High resolution transmission electron microscopy (HRTEM) revealed the formation of crystalline non-aggregated 0.6-5 nm sized nanoparticles. The elemental composition of the alloy nanoparticles measured using energy dispersive X-ray (EDX) showed the presence of the four elements; Pt, Ir, Ru and Te. Selected area electron diffraction pattern (SAED) nanoparticles showed characteristic electron diffraction rings of Pt, PtIr, PtRu, PtTe, PtIrTe and PtRuTe, confirmed the phase and crystallinity of the materials. The electrocatalytic behaviour of the PtIrTe and PtRuTe nanoparticles for ammonia oxidation in KOH solution showed reduced overpotential properties and an increased current density compared to the bare Pt nanoparticles electrode thus providing a promising alternative for development of low-cost and high-performance electrocatalyst for electro-oxidation of ammonia. In terms of minimising the ammonia oxidation overpotential, catalyst selection were ranked as follows PtTe > PtRuTe > PtIr > PtRu > PtIrTe > Pt, with regards to maximising the exchange current density, the ranking was PtTe > PtIrTe > Pt > PtRu > PtIr > PtRuTe. The results were further interrogated with EIS which revealed in terms of minimising charge transfer resistance (Rct) the nano catalysts selection were ranked as follows PtRuTe ˃ PtIrTe ˃ PtRu ˃ PtIr ˃ Pt ˃ Bare Pt electrode ˃ PtTe. That meant that the conductivity of the catalysts facilitated the flow of charge through the nanoalloys onto the surface of the electrode. The difference in charge transfer resistance revealed that PtRuTe and PtIrTe nanoalloys had an obvious advantage in reaction activity. The application of ternary metal nanoparticles had significantly enhanced the catalytic activity toward ammonia oxidation. The role of the third component (Te) had improved the catalysts in reducing Nads adsorption on Pt. The enhanced catalytic activity has been attributed by a number of factors including the change in Pt–Pt inter atomic distance, number of Pt nearest neighbours, Pt 5d band vacancy, and Pt metal content on particle surface.
Gcilitshana, Oko Unathi. « Electrochemical Characterization of Platinum based anode catalysts for Polymer Exchange Membrane Fuel Cell ». Thesis, University of the Western Cape, 2008. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5972_1266961431.
Texte intégralIn this study, the main objective was to investigate the tolerance of platinum based binary anode catalysts for CO poisoning from 10ppm up to1000ppm and to identify the
best anode catalysts for PEMFCs that tolerates the CO fed with reformed hydrogen.
Zeszut, Ronald Anthony Jr. « Effects of Transport and Additives on Electroless Copper Plating ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1497271315649528.
Texte intégralMorin, Sylvie. « Electrochemical studies of two-dimensional processes at well-defined platinum single crystal electrodes ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq21011.pdf.
Texte intégralZhang, Tianhou. « Theoretical studies of fuel cell reaction mechanisms H₂ and O₂ on platinum electrodes / ». online version, 2008. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=case1215456813.
Texte intégralOgbu, Chidiebere. « Peroxide Sensing Using Nitrogen-Doped and Platinum Nanoparticle-modified Screen-Printed Carbon Electrodes ». Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/etd/3622.
Texte intégralZhang, Tianhou. « Theoretical Studies of Fuel Cell Reaction Mechanisms : Water and Oxygen on Platinum Electrodes ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1215456813.
Texte intégralMaunier-Morin, Marie-Christine. « Oxydation électrocatalytique de l'éthanol sur le platine et l'or : effets de structure, étude des mécanismes sur le platine par voltammétrie à potentiel programme et par spectroscopie infrarouge de réflexion ». Poitiers, 1988. http://www.theses.fr/1988POIT2308.
Texte intégralMandadi, Deepika. « A Characterization of Caffeine Imprinted Polypyrrole Electrode ». TopSCHOLAR®, 2009. http://digitalcommons.wku.edu/theses/130.
Texte intégralCoudray, Mathias. « Procédé de recyclage des Assemblages Membrane Electrode (AME) de piles à combustible utilisant des liquides ioniques ». Thesis, Lyon, 2019. https://n2t.net/ark:/47881/m6h70f5d.
Texte intégralRecovery of the protons-exchange membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) is an important issue for the growing of the fuel cells market. These MEAs contain platinum (Pt), which as a precious metal mainly influences the total cost of fuel cells. The recycling of Pt is still based to a great extent on hydro or pyrometallurgical techniques which produce toxic and pollutant gas emissions. Some studies aimed to set up processes to recycle platinum in a more sustainable way than traditional metal lixiviation using strong acids. The study here is part of this research field and is about a new way to separate the different components of the PEMFC electrode using ionic liquids for the recycling of these valuable materials. These liquids possess excellent thermal and chemical stability and their non-volatility can be useful to set up a safer way to recover platinum. A selection of ionic liquids was studied and some of them, including the P66614Cl (trihexyltetradecylphosphonium chloride), could be use to recover Pt nanoparticles detached from their carbon support and stabilized in the ionic liquid. A study on the interactions of ionic liquids and the components of the MEA allowed the extraction mecanisms to be better understood. Thus the ionics liquids interact strongly with Nafion in the catalyst layer which allows Pt nanoparticles to be recovered. These strong interactions set the stage for the simultaneous recycling of Nafion and Pt from MEAs
Russell, Jason Bradley. « Investigation of the Effect of Catalyst Layer Composition on the Performance of PEM Fuel Cells ». Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/34526.
Texte intégralMaster of Science
Roller, Justin. « Low platinum electrodes for proton exchange fuel cells manufactures by reactive spray deposition technology ». Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/4458.
Texte intégralDe, Cliff Steve V. « Electrochemical Quartz Crystal Microbalance and Impedance Analysis investigations of surface processes at platinum electrodes ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq20996.pdf.
Texte intégralFeltovich, Susanne D. « Influence of solvent on the infared spectrum of carbon monoxide adsorbed on platinum electrodes ». Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09292009-020247/.
Texte intégralBoulenouar-Mohamedi, Fatma Zohra. « Étude de l'oxydation anodique de l'hydrogène à l'interface métal/zircone stabilisée à haute température (métal=platine, nickel, cuivre) ». Grenoble INPG, 1995. http://www.theses.fr/1995INPG0055.
Texte intégralSilwana, Bongiwe. « Graphene supported antimony nanoparticles on carbon electrodes for stripping analysis of environmental samples ». University of the Western Cape, 2015. http://hdl.handle.net/11394/5141.
Texte intégralPlatinum Group Metals (PGMs), particularly palladium (Pd), platinum (Pt) and rhodium (Rh) have been identified as pollutants in the environment due to their increased use in catalytic converters and mining in South Africa (as well as worldwide). Joining the continuous efforts to alleviate this dilemma, a new electrochemical sensor based on a nanoparticle film transducer has been developed to assess the level of these metals in the environment. The main goal of this study was to exploit the capabilities of nanostructured material for the development and application of an adsorptive stripping voltammetric method for reliable quantification of PGMs in environmental samples. In the study reported in this thesis, glassy carbon electrode (GCE) and screen-printed carbon electrode (SPCE) surfaces were modified with conducting films of nanostructured reduced graphene oxide-antimony nanoparticles (rGO-SbNPs) for application as electrochemical sensors. The rGO-SbNPs nanocomposite was prepared by Hummer`s synthesis of antimony nanoparticles in reaction medium containing reduced graphene oxide. Sensors were constructed by drop coating of the surfaces of the carbon electrodes with rGO-SbNPs films followed by air-drying. The nanocomposite material was characterised by: scanning and transmission electron miscroscopies; FTIR, UV-Vis and Ramanspectrosocopies; dc voltammetry; and electrochemical impedance spectroscopy. The real surface area of both electrodes were studied and estimated to be 1.66 × 10⁶ mol cm⁻² and 4.09 × 10³ mol cm⁻² for SPCE/rGO-SbNPs and GCE/rGO-SbNPs, respectively. The film thickness was also evaluated and estimated to be 0.36 cm and 1.69 × 10⁻⁶ cm for SPCE/rGO-SbNPs and GCE/rGO-SbNPs, respectively. Referring to these results, the SPCE/rGO-SbNPs sensor had a better sensitivity than the GCE/rGO-SbNPs sensor. The electroanalytical properties of the PGMs were first studied by cyclic voltammetry followed by indepth stripping voltammetric analysis. The development of the stripping voltammetry methodology involved the optimisation of experimental conditions such as selection of adequate supporting electrolyte, choice of pH and /or concentration of supporting electrolytes, deposition potential, deposition time, stirring conditions. The detection of Pd(II), Pt(II) and Rh(III) in environmental samples were performed SPCE/rGO-SbNPs and GCE/rGO-SbNPs at the optimised experimental conditions For the GCE/rGO-SbNPs sensor, the detection limit was found to be 0.45, 0.49 and 0.49 pg L⁻¹ (S/N = 3) for Pd(II), Pt(II) and Rh(III), respectively. For the SPCE/rGO-SbNPs sensor, the detection limit was found to be 0.42, 0.26 and 0.34 pg L⁻¹ (S/N = 3) for Pd(II), Pt(II) and Rh(III), respectively. The proposed adsorptive differential pulse cathodic stripping voltammetric (AdDPCSV) method was found to be sensitive, accurate, precise, fast and robust for the determination of PGMs in soil and dust samples. The simultaneous determination of PGMs was also investigated with promising results obtained. The AdDPCSV sensor performance was compared with that of inductive coupled plasma mass spectroscopy (ICP-MS) for the determination of PGM ions in soil and dust samples. It was found that though the metals could be determined by ICP-MS technique, it was limited from the standpoints of sensitivity, ease of operation and versatility compared to the AdDPCSV sensor. This study has show cased the successful construction and application of novel SPCE/rGO-SbNPs and GCE/rGO-SbNPs AdDPCSV sensors forthe determination of PGMs in environmental samples (specifically roadside dust and soil samples). The study provides a promising analytical tool for monitoring PGMs pollutants that are produced by automobiles and transported in the environment.
Essis-Yei, L. Hortense. « Oxydation electrocatalytique du glucose sur le platine et l'or en milieu aqueux ». Poitiers, 1987. http://www.theses.fr/1987POIT2277.
Texte intégralMartínez-Hincapié, Ricardo. « Efecto del pH en la estructura de la doble capa eléctrica y su influencia en la reactividad electroquímica ». Doctoral thesis, Universidad de Alicante, 2019. http://hdl.handle.net/10045/94050.
Texte intégralGarcía, García Vicente. « Reducción electroquímica de β-cloropropiofenona sobre electrodos de mercurio y platino en DMF ». Doctoral thesis, 1991. http://hdl.handle.net/10045/3533.
Texte intégralRodes, García Antonio. « Una aproximación molecular al estudio de procesos electródicos : caracterización electroquímica de superficies escalonadas de platino y su aplicación al estudio de diferentes procesos de reconstrucción superficial ». Doctoral thesis, 1991. http://hdl.handle.net/10045/3920.
Texte intégralHerrero, Enrique. « Adsorción y oxidación de metanol, ácido fórmico y CO sobre electrodos monocristalinos de platino modificados con adátomos ». Doctoral thesis, 1995. http://hdl.handle.net/10045/3609.
Texte intégral