Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Emulsione Pickering.

Articles de revues sur le sujet « Emulsione Pickering »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Emulsione Pickering ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Wang, Guozhen, Jin Li, Xiaoqin Yan, et al. "Stability and Bioaccessibility of Quercetin-Enriched Pickering Emulsion Gels Stabilized by Cellulose Nanocrystals Extracted from Rice Bran." Polymers 16, no. 7 (2024): 868. http://dx.doi.org/10.3390/polym16070868.

Texte intégral
Résumé :
To investigate the optimal delivery system of quercetin, in this paper, cellulose nanocrystals (CNCs) extracted from rice bran were used to stabilize the Pickering emulsion and Pickering emulsion gels (PEGs) with quercetin. To compare the emulsion properties, stability, antioxidation activity, encapsulation rate, and bioaccessibility of the quercetin, four emulsions of CNC Pickering emulsion (C), CNC Pickering emulsion with quercetin (CQ), CNC Pickering gel emulsion (CG), and CNC Pickering gel emulsions with quercetin (CQG) were prepared. All four emulsions exhibited elastic gel network struct
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fu, Lipei, Qianli Ma, Kaili Liao, Junnan An, Jinmei Bai, and Yanfeng He. "Application of Pickering emulsion in oil drilling and production." Nanotechnology Reviews 11, no. 1 (2021): 26–39. http://dx.doi.org/10.1515/ntrev-2022-0003.

Texte intégral
Résumé :
Abstract When surfactant is used as emulsifier, the stability of emulsion is often greatly reduced with the influence of reservoir conditions (temperature, pressure, salinity, etc.), which shortens the validity period of emulsion. Pickering emulsion has a wide range of applications in the oil and gas field due to its advantages of good stability and easy regulation. In this article, the formation, stabilization mechanism, and influencing factors of Pickering emulsions were introduced, and the application status and prospects of Pickering emulsions in oil and gas field were summarized. It was p
Styles APA, Harvard, Vancouver, ISO, etc.
3

Liu, Caihua, Yachao Tian, Zihan Ma та Linyi Zhou. "Pickering Emulsion Stabilized by β-Cyclodextrin and Cinnamaldehyde/β-Cyclodextrin Composite". Foods 12, № 12 (2023): 2366. http://dx.doi.org/10.3390/foods12122366.

Texte intégral
Résumé :
A Pickering emulsion was prepared using β-cyclodextrin (β-CD) and a cinnamaldehyde (CA)/β-CD composite as emulsifiers and corn oil, camellia oil, lard oil, and fish oil as oil phases. It was confirmed that Pickering emulsions prepared with β-CD and CA/β-CD had good storage stability. The rheological experiments showed that all emulsions had G′ values higher than G″, thus confirming their gel properties. The results of temperature scanning rheology experiments revealed that the Pickering emulsion prepared with β-CD and CA/β-CD composites had high stability, in the range of 20–65 °C. The chewing
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cho, Yu-Jin, Dong-Min Kim, In-Ho Song, et al. "An Oligoimide Particle as a Pickering Emulsion Stabilizer." Polymers 10, no. 10 (2018): 1071. http://dx.doi.org/10.3390/polym10101071.

Texte intégral
Résumé :
A pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA)-based oligoimide (PMDA-ODA) was synthesized by a one-step procedure using water as a solvent. The PMDA-ODA particles showed excellent partial wetting properties and were stably dispersed in both water and oil phases. A stable dispersion was not obtained with comparison PMDA-ODA particles that were synthesized by a conventional two-step method using an organic solvent. Both oil-in-water and water-in-oil Pickering emulsions were prepared using the oligoimide particles synthesized in water, and the size of the emulsion droplet was cont
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Xingzhong, Dan Wang, Shilin Liu, and Jie Tang. "Bacterial Cellulose Nanofibril-Based Pickering Emulsions: Recent Trends and Applications in the Food Industry." Foods 11, no. 24 (2022): 4064. http://dx.doi.org/10.3390/foods11244064.

Texte intégral
Résumé :
The Pickering emulsion stabilized by food-grade colloidal particles has developed rapidly in recent decades and attracts extensive attention for potential applications in the food industry. Bacterial cellulose nanofibrils (BCNFs), as green and sustainable colloidal nanoparticles derived from bacterial cellulose, have various advantages for Pickering emulsion stabilization and applications due to their unique properties, such as good amphiphilicity, a nanoscale fibrous network, a high aspect ratio, low toxicity, excellent biocompatibility, and sustainability. This review provides a comprehensiv
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zhang, Junjia, Jieyu Zhu, Yujia Cheng, and Qingrong Huang. "Recent Advances in Pickering Double Emulsions and Potential Applications in Functional Foods: A Perspective Paper." Foods 12, no. 5 (2023): 992. http://dx.doi.org/10.3390/foods12050992.

Texte intégral
Résumé :
Double emulsions are complex emulsion systems with a wide range of applications across different fields, such as pharmaceutics, food and beverage, materials sciences, personal care, and dietary supplements. Conventionally, surfactants are required for the stabilization of double emulsions. However, due to the emerging need for more robust emulsion systems and the growing trends for biocompatible and biodegradable materials, Pickering double emulsions have attracted increasing interest. In comparison to double emulsions stabilized solely by surfactants, Pickering double emulsions possess enhanc
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhang, Wanping, Jian Li, Yaping Wang, Wenhua Ou, Guangyong Zhu, and Shilian Zheng. "Pickering emulsions stabilized by modified Thanaka powder: emulsifying capability and stability." Polish Journal of Chemical Technology 27, no. 1 (2025): 44–53. https://doi.org/10.2478/pjct-2025-0006.

Texte intégral
Résumé :
Abstract Thanaka powder is a natural and safe biomass material that can be used in the preparation of Pickering emulsions. It contains lots of hydrophilic phenolic hydroxyl groups, making it highly hydrophilic and leading to emulsion instability, which further limits its application in the cosmetics industry. In this paper, Thanaka powder was modified to improve its stability. The modified Thanaka powder was characterized and was used to prepare Pickering emulsions. The results showed that the stability of the Pickering emulsion increased with the increase of the solid particle concentration;
Styles APA, Harvard, Vancouver, ISO, etc.
8

Klosowski, Ana Beatriz, Bruno Vincenzo Fiod Riccio, Karina de Castro Pereira, et al. "Starch nanoparticles with brewers’ spent grain extract as stabilizers for Pickering emulsions: a biodegradable and sustainable alternative for natural cosmetics." OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA 23, no. 4 (2025): e9711. https://doi.org/10.55905/oelv23n4-158.

Texte intégral
Résumé :
Natural sources of bioactive compounds have been studied worldwide. This study highlight the potential benefits of Pickering emulsions, a novel method of stabilizing two immiscible phases without surfactants, when added with starch nanoparticles with brewers’ spent grain extract (BSG extract), evaluated by using a 2³ factorial design. The effects of starch nanoparticle concentration, oil/water ratio, and stirring time on the properties of Pickering emulsions were evaluated. The cytotoxicity of BSG extract was evaluated in 3T3 fibroblasts by the MTT and neutral red uptake (NRU) methods. It was
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xie, Rongzhen, Zhijian Tan, Wei Fan, et al. "Deep-Eutectic-Solvent-in-Water Pickering Emulsions Stabilized by Starch Nanoparticles." Foods 13, no. 14 (2024): 2293. http://dx.doi.org/10.3390/foods13142293.

Texte intégral
Résumé :
Deep eutectic solvents (DESs) have received extensive attention in green chemistry because of their ease of preparation, cost-effectiveness, and low toxicity. Pickering emulsions offer advantages such as long-term stability, low toxicity, and environmental friendliness. The oil phase in some Pickering emulsions is composed of solvents, and DESs can serve as a more effective alternative to these solvents. The combination of DESs and Pickering emulsions can improve the applications of green chemistry by reducing the use of harmful chemicals and enhancing sustainability. In this study, a Pickerin
Styles APA, Harvard, Vancouver, ISO, etc.
10

Potoroko, Irina, Irina Kalinina, and Anastasia Paimulina. "Properties Stability Forecast of Pickering Emulsion Structured by Bioactive Plant Particles." Food Industry 7, no. 4 (2022): 111–19. http://dx.doi.org/10.29141/2500-1922-2022-7-4-13.

Texte intégral
Résumé :
The new generation design and production of food systems with the declared physicochemical and bioactive properties is impossible without the use of science-grounded approaches based on a complex combination of experimental studies and quantum calculation algorithms. One of the promising food systems, actively studied by the scientists around the world, are the Pickering emulsions. Pickering emulsions act as an emulsion food products basis and a fortifying complex that can be an effective system for delivering biologically active substances to the human body. The study aimed at obtaining predi
Styles APA, Harvard, Vancouver, ISO, etc.
11

M, Divyashree, Ganga A, and Samit Dutta. "Pickering Emulsions: An Emerging Clean-label Emulsion Technology and its Applications in the Food Industry." Archives of Current Research International 25, no. 4 (2025): 237–58. https://doi.org/10.9734/acri/2025/v25i41154.

Texte intégral
Résumé :
Pickering emulsions, stabilized by solid particles instead of traditional surfactants, have garnered significant attention for their potential applications in the food industry. This review explores the fundamental principles, and provides a comprehensive overview of the mechanisms behind the stabilization of Pickering emulsions, with theories on the adsorption of solid particles at the oil-water interface mechanisms, significant parameters affecting the stability of emulsion such as wettability, particle size, shape, surface charge, etc. Additionally, various preparation methodologies for cre
Styles APA, Harvard, Vancouver, ISO, etc.
12

Yousufi, Muhammad Mohsin, Iskandar bin Dzulkarnain, Mysara Eissa Mohyaldinn Elhaj, and Shehzad Ahmed. "A Perspective on the Prospect of Pickering Emulsion in Reservoir Conformance Control with Insight into the Influential Parameters and Characterization Techniques." Processes 11, no. 9 (2023): 2672. http://dx.doi.org/10.3390/pr11092672.

Texte intégral
Résumé :
In reservoir conformance control, polymer gels and foams are majorly used; however, they have drawbacks such as inducing formation damage, having weaker shear resistance, requiring a higher pumping rate, and limited penetration depth. Emulsions are a potential alternative that can address these issues, but they are not widely used. Current surfactant-based emulsions require high emulsifier concentrations for stability and often rely on multiple additives to address various factors, which makes the surfactant synthesis and utilization of emulsions quite challenging. However, Pickering emulsions
Styles APA, Harvard, Vancouver, ISO, etc.
13

Yang, Minghe, Shujin Cheng, Lei LÜ, Zhonghui Han, and Jinxing He. "Synergistic stabilization of a menthol Pickering emulsion by zein nanoparticles and starch nanocrystals: Preparation, structural characterization, and functional properties." PLOS ONE 19, no. 6 (2024): e0303964. http://dx.doi.org/10.1371/journal.pone.0303964.

Texte intégral
Résumé :
A Pickering emulsion was synergistically stabilised with zein nanoparticles (ZNPs) and starch nanocrystals (SNCs) to prepare it for menthol loading. After response surface optimisation of the emulsion preparation conditions, a Pickering emulsion prepared with a ZNPs:SNCs ratio of 1:1, a particle concentration of 2 wt% and a water:oil ratio of 1:1 provided the highest menthol encapsulation rate of the emulsions tested (83%) with good storage stability within 30 days. We examined the bilayer interface structure of the emulsion by optical microscopy, scanning electron microscopy, and confocal las
Styles APA, Harvard, Vancouver, ISO, etc.
14

Sanchez-Salvador, Jose Luis, Ana Balea, M. Concepcion Monte, Angeles Blanco, and Carlos Negro. "Pickering Emulsions Containing Cellulose Microfibers Produced by Mechanical Treatments as Stabilizer in the Food Industry." Applied Sciences 9, no. 2 (2019): 359. http://dx.doi.org/10.3390/app9020359.

Texte intégral
Résumé :
Pickering emulsions are emulsions stabilized by solid particles, which generally provide a more stable system than traditional surfactants. Among various solid stabilizers, bio-based particles from renewable resources, such as micro- and nanofibrillated cellulose, may open up new opportunities for the future of Pickering emulsions owing to their properties of nanosize, biodegradability, biocompatibility, and renewability. The aim of this research was to obtain oil-in water (O/W) Pickering emulsions using cellulose microfibers (CMF) produced from cotton cellulose linters by mechanical treatment
Styles APA, Harvard, Vancouver, ISO, etc.
15

Sy, Papa Mady, Sidy Mouhamed Dieng, Alphonse Rodrigue Djiboune, et al. "O/W Pickering emulsion stabilized by magnesium carbonate particles for drug delivery systems." Journal of Drug Delivery and Therapeutics 13, no. 2 (2023): 47–54. http://dx.doi.org/10.22270/jddt.v13i2.5925.

Texte intégral
Résumé :
This study investigates the formulation of surfactant-free Pickering emulsions that release a drug at a specific pH to improve its oral bioavailability. The stabilizing particles composed of magnesium carbonate particles. Pickering oil-in-water emulsions stabilized with magnesium carbonate particles and encapsulating a hydrophobic drug model (ibuprofen) were formulated using a high-energy process with rotor-stator turbo mixer (IKA® T25 digital ultra-Turrax). The experimental approach explored the impact of all formulation parameters, dispersed phase and amount of magnesium carbonate particles
Styles APA, Harvard, Vancouver, ISO, etc.
16

Liu, Jiongna, Hengxuan Zhang, Xue Sun, and Fangyu Fan. "Development and Characterization of Pickering Emulsion Stabilized by Walnut Protein Isolate Nanoparticles." Molecules 28, no. 14 (2023): 5434. http://dx.doi.org/10.3390/molecules28145434.

Texte intégral
Résumé :
This study was conducted to prepare walnut protein isolate nanoparticles (nano-WalPI) by pH-cycling, combined with the ultrasound method, to investigate the impact of various nano-WalPI concentrations (0.5~2.5%) and oil volume fractions (20~70%) on the stability of Pickering emulsion, and to improve the comprehensive utilization of walnut residue. The nano-WalPI was uniform in size (average size of 108 nm) with good emulsification properties (emulsifying activity index and stability index of 32.79 m2/g and 1423.94 min, respectively), and it could form a stable O/W-type Pickering emulsion. When
Styles APA, Harvard, Vancouver, ISO, etc.
17

de Carvalho-Guimarães, Fernanda Brito, Kamila Leal Correa, Tatiane Pereira de Souza, Jesus Rafael Rodríguez Amado, Roseane Maria Ribeiro-Costa, and José Otávio Carréra Silva-Júnior. "A Review of Pickering Emulsions: Perspectives and Applications." Pharmaceuticals 15, no. 11 (2022): 1413. http://dx.doi.org/10.3390/ph15111413.

Texte intégral
Résumé :
Pickering emulsions are systems composed of two immiscible fluids stabilized by organic or inorganic solid particles. These solid particles of certain dimensions (micro- or nano-particles), and desired wettability, have been shown to be an alternative to conventional emulsifiers. The use of biodegradable and biocompatible stabilizers of natural origin, such as clay minerals, presents a promising future for the development of Pickering emulsions and, with this, they deliver some advantages, especially in the area of biomedicine. In this review, the effects and characteristics of microparticles
Styles APA, Harvard, Vancouver, ISO, etc.
18

TOUZOUIRT, Saida, Fetta KESSAL, Chanez BELAIDI, and Dihia BOULHALFA. "INFLUENCE OF PROCESSING PARAMETERS ON RHEOLOGICAL BEHAVIOR OF BENTONITE-BASED PICKERING EMULSION." Journal of Drug Delivery and Therapeutics 8, no. 5 (2018): 442–47. http://dx.doi.org/10.22270/jddt.v8i5.1903.

Texte intégral
Résumé :
The aim of this work is to study the impact of processing parameters on the rheological properties of Pickering emulsions containing bentonite particles, CTAB, NaCl and soybean oil. Emulsification experiments were performed using mixing and homogenization at different speeds for 10 minutes. The effects of stirring speed and homogenization were investigated to determine the best conditions for producing a suitable Pickering emulsion for the intended application. In order to assess the influence of processing parameters on the Pickering emulsion rheological behavior average droplet size was meas
Styles APA, Harvard, Vancouver, ISO, etc.
19

Xie, Long, Xiaolin Dai, Yuke Li, Yi Cao, Mingyi Shi, and Xiaofang Li. "Pickering Emulsion of Curcumin Stabilized by Cellulose Nanocrystals/Chitosan Oligosaccharide: Effect in Promoting Wound Healing." Pharmaceutics 16, no. 11 (2024): 1411. http://dx.doi.org/10.3390/pharmaceutics16111411.

Texte intégral
Résumé :
Background: The stabilization of droplets in Pickering emulsions using solid particles has garnered significant attention through various methods. Cellulose and chitin derivatives in nature offer a sustainable source of Pickering emulsion stabilizers. Methods: In this study, medium-chain triglycerides were used as the oil phase for the preparation of emulsion. This study explores the potential of cellulose nanocrystals (CNC) and shell oligosaccharides (COS) as effective stabilizers for achieving stable Pickering emulsions. Optical microscopy, CLSM, and Cyro-SEM were employed to analyze CNC/COS
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ren, Gaihuan, Zhanzhao Li, Dongxu Lu, et al. "pH and Magnetism Dual-Responsive Pickering Emulsion Stabilized by Dynamic Covalent Fe3O4 Nanoparticles." Nanomaterials 12, no. 15 (2022): 2587. http://dx.doi.org/10.3390/nano12152587.

Texte intégral
Résumé :
Herein, we describe pH and magnetism dual-responsive liquid paraffin-in-water Pickering emulsion stabilized by dynamic covalent Fe3O4 (DC-Fe3O4) nanoparticles. On one hand, the Pickerinfigureg emulsions are sensitive to pH variations, and efficient demulsification can be achieved by regulating the pH between 10 and 2 within 30 min. The dynamic imine bond in DC-Fe3O4 can be reversibly formed and decomposed, resulting in a pH-controlled amphiphilicity. The Pickering emulsion can be reversibly switched between stable and unstable states by pH at least three times. On the other hand, the magnetic
Styles APA, Harvard, Vancouver, ISO, etc.
21

Muiz, Abdul, Iveta Klojdová, and Constantinos Stathoupoulos. "Utilization of by-products for preparation of Pickering particles." European Food Research and Technology 249, no. 12 (2023): 3069–83. https://doi.org/10.1007/s00217-023-04349-z.

Texte intégral
Résumé :
The processing of foods yields many by-products and waste. By-products are rich in bioactive components such as antioxidants, antimicrobial substances, polysaccharides, proteins, and minerals. A novel use of by-products is as materials for the preparation of Pickering particles. Pickering particles are considered appropriate materials for the stabilization of emulsions. Conventionally, emulsions are stabilized by the addition of stabilizers or emulsifiers which decrease the surface tension between phases. Emulsifiers are not always suitable for some applications, especially in foods, pharmaceu
Styles APA, Harvard, Vancouver, ISO, etc.
22

Li, Dong, Min Shen, Guofan Sun, et al. "Facile immobilization of lipase based on Pickering emulsion via a synergistic stabilization by palygorskite–enzyme." Clay Minerals 54, no. 3 (2019): 293–98. http://dx.doi.org/10.1180/clm.2019.40.

Texte intégral
Résumé :
AbstractA Pickering emulsion was prepared via synergistic stabilization of a lipase and palygorskite particles. The optimum conditions for the stabilization of the Pickering emulsion, such as the concentrations of the palygorskite particles and lipase, were explored. The morphology of emulsion droplets was examined using digital optical microscopy and polarizing optical microscopy. The palygorskite–lipase co-stabilized Pickering emulsions were investigated by determination of the adsorption rate, pH and zeta potential of the aqueous dispersion, as well as by determining the contact angle value
Styles APA, Harvard, Vancouver, ISO, etc.
23

Hossain, Kazi M. Zakir, Laura Deeming, and Karen J. Edler. "Recent progress in Pickering emulsions stabilised by bioderived particles." RSC Advances 11, no. 62 (2021): 39027–44. http://dx.doi.org/10.1039/d1ra08086e.

Texte intégral
Résumé :
In a Pickering emulsion, solid particles accumulate at the interface between two immiscible phases to reduce coalescence by forming a physical barrier. Using bioderived particles is becoming popular to generate more sustainable Pickering emulsions.
Styles APA, Harvard, Vancouver, ISO, etc.
24

İşçimen, Elif Meltem. "Pickering emulsions from rice protein-xanthan gum nanoparticles at different oil content: emulsion properties and using producing cake as a fat replacer." Harran Tarım ve Gıda Bilimleri Dergisi 29, no. 1 (2025): 162–76. https://doi.org/10.29050/harranziraat.1568345.

Texte intégral
Résumé :
In the present study, Pickering emulsions with different oil content (15%(PE15),30 (PE30), 45(PE45), and 60 (PE60)) were created with nanoparticles produced from rice protein isolate (RPI) and xanthan gum (XG). The aim was to produce cakes with reduced oil content with these emulsions. For this purpose, firstly the emulsion properties were evaluated. Emulsion activity (EAI)-stability indexes (ESI), ζ-potentials, and nanoparticle structures of the emulsions were investigated. The EAI value was determined as 54.14±3.19 m2/g and 54.15±0.95 m2/g for the emulsions containing 15% and 30 (w/w) oil, r
Styles APA, Harvard, Vancouver, ISO, etc.
25

Józefczak, A., and R. Wlazło. "Ultrasonic Studies of Emulsion Stability in the Presence of Magnetic Nanoparticles." Advances in Condensed Matter Physics 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/398219.

Texte intégral
Résumé :
Pickering emulsions are made of solid particle-stabilized droplets suspended in an immiscible continuous liquid phase. A magnetic emulsion can be obtained using magnetic particles. Solid magnetic nanoparticles are adsorbed strongly at the oil-water interface and are able to stabilize emulsions of oil and water. In this work emulsions stabilized by magnetite nanoparticles were obtained using high-energy ultrasound waves and a cavitation mechanism and, next, their stability in time was tested by means of acoustic waves with a low energy, without affecting the structure. An acoustic study showed
Styles APA, Harvard, Vancouver, ISO, etc.
26

Song, Ziyue, Yang Yang, Fenglian Chen, et al. "Effects of Concentration of Soybean Protein Isolate and Maltose and Oil Phase Volume Fraction on Freeze–Thaw Stability of Pickering Emulsion." Foods 11, no. 24 (2022): 4018. http://dx.doi.org/10.3390/foods11244018.

Texte intégral
Résumé :
There is growing interest in enhancing the freeze–thaw stability of a Pickering emulsion to obtain a better taste in the frozen food field. A Pickering emulsion was prepared using a two-step homogenization method with soybean protein and maltose as raw materials. The outcomes showed that the freeze–thaw stability of the Pickering emulsion increased when prepared with an increase in soybean protein isolate (SPI) and maltose concentration. After three freeze–thaw treatments at 35 mg/mL, the Turbiscan Stability Index (TSI) value of the emulsion was the lowest. At this concentration, the surface h
Styles APA, Harvard, Vancouver, ISO, etc.
27

Jia, Xiaoxue, Peihua Ma, Kim Shi-Yun Taylor, Kevin Tarwa, Yimin Mao, and Qin Wang. "Development of Stable Pickering Emulsions with TEMPO-Oxidized Chitin Nanocrystals for Encapsulation of Quercetin." Foods 12, no. 2 (2023): 367. http://dx.doi.org/10.3390/foods12020367.

Texte intégral
Résumé :
Pickering emulsions stabilized by TEMPO-oxidized chitin nanocrystals (T-ChNCs) were developed for quercetin delivery. T-ChNCs were synthesized by TEMPO oxidation chitin and systematically characterized in terms of their physicochemical properties. T-ChNCs were rod-like with a length of 279.7 ± 11.5 nm and zeta potential around −56.1 ± 1.6 mV. The Pickering emulsions were analyzed through an optical microscope and CLSM. The results showed that the emulsion had a small droplet size (972.9 ± 86.0 to 1322.3 ± 447.7 nm), a high absolute zeta potential value (−48.2 ± 0.8 to −52.9 ± 1.9 mV) and a hig
Styles APA, Harvard, Vancouver, ISO, etc.
28

Guan, Zi-Jing, Wang-Wei Zhang, Jing-Jing Wang, Kiran Thakur, Fei Hu, and Jian-Guo Zhang. "Enrichment of Sodium Alginate-Gum Arabic Composite Films with Oregano/Citronella Essential Oils for Fresh Goji Berry (Lycium Barbarum L.) Preservation." Current Topics in Nutraceutical Research 22, no. 2 (2023): 657–71. http://dx.doi.org/10.37290/ctnr2641-452x.22:657-671.

Texte intégral
Résumé :
This study reported the preparation of composite sodium alginate-gum Arabic films by incorporating nano emulsions and pickering emulsions loaded with mixed oregano and citronella essential oils. Nano emulsions and pickering emulsions were prepared with Tween 80 and whey protein isolate/inulin. The results of Fourier transform infrared, X-ray diffraction, thermo-gravimetric analysis, field emission scanning electron microscopy, and atomic force microscopy demonstrated that sodium alginate-gum Arabic and the emulsion-loaded mixed oregano and citronella essential oils were biocompatible. The mixe
Styles APA, Harvard, Vancouver, ISO, etc.
29

Cahyana, Yana, Yunita Safriliani Eka Putri, Dian Siti Solihah, Farrah Shabira Lutfi, Randah Miqbil Alqurashi, and Herlina Marta. "Pickering Emulsions as Vehicles for Bioactive Compounds from Essential Oils." Molecules 27, no. 22 (2022): 7872. http://dx.doi.org/10.3390/molecules27227872.

Texte intégral
Résumé :
Pickering emulsions are emulsion systems stabilized by solid particles at the interface of oil and water. Pickering emulsions are considered to be natural, biodegradable, and safe, so their applications in various fields—such as food, cosmetics, biomedicine, etc.—are very promising, including as a vehicle for essential oils (EOs). These oils contain volatile and aromatic compounds and have excellent properties, such as antifungal, antibacterial, antiviral, and antioxidant activities. Despite their superior properties, EOs are prone to evaporation, decompose when exposed to light and oxygen, an
Styles APA, Harvard, Vancouver, ISO, etc.
30

Marto, Joana, Andreia Nunes, Ana Margarida Martins, et al. "Pickering Emulsions Stabilized by Calcium Carbonate Particles: A New Topical Formulation." Cosmetics 7, no. 3 (2020): 62. http://dx.doi.org/10.3390/cosmetics7030062.

Texte intégral
Résumé :
Pickering emulsions are systems composed of two immiscible fluids stabilized by solid organic or inorganic particles. Pickering emulsions are particularly useful in cosmetics, where the surfactants are unwanted, as well as in the pharmaceutical field, where transdermal and/or dermal drug delivery is difficult to achieve and controlled drug release is desired. Here, we studied calcium carbonate particles as stabilizers of Pickering emulsions for topical use. An optimized formulation was obtained using a Quality by Design approach. First, a screening experiment was performed to identify the form
Styles APA, Harvard, Vancouver, ISO, etc.
31

Xi, Xiaohong, Zihao Wei, Yanan Xu, and Changhu Xue. "Clove Essential Oil Pickering Emulsions Stabilized with Lactoferrin/Fucoidan Complexes: Stability and Rheological Properties." Polymers 15, no. 8 (2023): 1820. http://dx.doi.org/10.3390/polym15081820.

Texte intégral
Résumé :
Although studies have shown that lactoferrin (LF) and fucoidan (FD) can be used to stabilize Pickering emulsions, there have been no studies on the stabilization of Pickering emulsions via the use of LF–FD complexes. In this study, different LF–FD complexes were obtained by adjusting the pH and heating the LF and FD mixture while using different mass ratios, and the properties of the LF–FD complexes were investigated. The results showed that the optimal conditions for preparing the LF–FD complexes were a mass ratio of 1:1 (LF to FD) and a pH of 3.2. Under these conditions, the LF–FD complexes
Styles APA, Harvard, Vancouver, ISO, etc.
32

Li, Qiang, Yuhan Zhang, Qing Miao, Lei Chen, Ziyun Yuan, and Gang Liu. "Rheological properties of oil–water Pickering emulsion stabilized by Fe3O4 solid nanoparticles." Open Physics 18, no. 1 (2020): 1188–200. http://dx.doi.org/10.1515/phys-2020-0223.

Texte intégral
Résumé :
Abstract Pickering emulsions have attracted extensive attention due to their good properties including easy to manufacture, high stability, and superparamagnetic response. To improve the emulsifying transportation of crude oil, a Pickering emulsion of crude oil and water stabilized by Fe3O4 nanoparticles was prepared and its rheological properties were tested in this research. It was found that the particle size of dispersion droplet polymerization group in stable crude oil Pickering emulsion is negatively correlated with solid content and water content, and the equilibrium apparent viscosity
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kuang, Ying, Qinjian Xiao, Yichen Yang, et al. "Investigation and Characterization of Pickering Emulsion Stabilized by Alkali-Treated Zein (AZ)/Sodium Alginate (SA) Composite Particles." Materials 16, no. 8 (2023): 3164. http://dx.doi.org/10.3390/ma16083164.

Texte intégral
Résumé :
Pickering emulsions stabilized by food-grade colloidal particles have attracted increasing attention in recent years due to their “surfactant-free” nature. In this study, the alkali-treated zein (AZ) was prepared via restricted alkali deamidation and then combined with sodium alginate (SA) in different ratios to obtain AZ/SA composite particles (ZS), which were used to stabilize Pickering emulsion. The degree of deamidation (DD) and degree of hydrolysis (DH) of AZ were 12.74% and 6.58% respectively, indicating the deamidation occurred mainly in glutamine on the side chain of the protein. After
Styles APA, Harvard, Vancouver, ISO, etc.
34

Jiang, Fangcheng, Chunling Chen, Xinlan Wang, Wenjing Huang, Weiping Jin, and Qingrong Huang. "Effect of Fibril Entanglement on Pickering Emulsions Stabilized by Whey Protein Fibrils for Nobiletin Delivery." Foods 11, no. 11 (2022): 1626. http://dx.doi.org/10.3390/foods11111626.

Texte intégral
Résumé :
The aim of the study was to investigate the effects of whey protein isolate (WPI) fibrils entanglement on the stability and loading capacity of WPI fibrils-stabilized Pickering emulsion. The results of rheology and small-angle X-ray scattering (SAXS) showed the overlap concentration (C*) of WPI fibrils was around 0.5 wt.%. When the concentration was higher than C*, the fibrils became compact and entangled in solution due to a small cross-sectional radius of gyration value (1.18 nm). The interfacial behavior was evaluated by interfacial adsorption and confocal laser scanning microscopy (CLSM).
Styles APA, Harvard, Vancouver, ISO, etc.
35

Zhou, Fengchao, Mingyang Dong, Jianhui Huang, et al. "Preparation and Physico-Chemical Characterization of OSA-Modified Starches from Different Botanical Origins and Study on the Properties of Pickering Emulsions Stabilized by These Starches." Polymers 15, no. 3 (2023): 706. http://dx.doi.org/10.3390/polym15030706.

Texte intégral
Résumé :
Native starch (NS) from different botanical origins (native rice/tapioca/oat starch, NRS/NTS/NOS) were hydrophobically modified by octenyl succinic anhydride (OSA), and the octenyl succinic (OS) groups were successfully introduced in the starch molecules which obtained OS-starch (OSRS, OSTS and OSOS) with different levels of modification (0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%) and degree of substitution (DS). The structural properties of the OS-starch, such as granule size, crystal, wettability and morphology were studied, and the OS-starch was used as particulate stabilizers to produce oil-in-wa
Styles APA, Harvard, Vancouver, ISO, etc.
36

Neha, Joshy* Vinu Gopakumar Krishna Prasanth M. S. "A Detailed Review on Pharmaceutical Applications of Pickering Emulsion." International Journal of Pharmaceutical Sciences 3, no. 6 (2025): 1300–1314. https://doi.org/10.5281/zenodo.15610172.

Texte intégral
Résumé :
Pickering emulsions, stabilized by solid particles rather than traditional surfactants, have gained significant attention in the pharmaceutical field for their unique physicochemical properties and enhanced stability. These emulsions offer a biocompatible and environmentally friendly platform suitable for various drug delivery applications, including oral, topical, and parenteral routes. Their ability to encapsulate both hydrophilic and hydrophobic drugs, protect sensitive bioactive, and provide controlled and targeted release makes them highly versatile. Recent advancements in the design of b
Styles APA, Harvard, Vancouver, ISO, etc.
37

Hutami, Shabrina Nindya, Ilham Kuncahyo, and TN Saifullah Sulaiman. "INFLUENCE OF SOLID PARTICLE AND SOYBEAN OIL OF PICKERING EMULSION DICLOFENAC DIETHYLAMINE USING TAGUCHI METHOD." Jurnal Kimia Riset 9, no. 1 (2024): 20–30. http://dx.doi.org/10.20473/jkr.v9i1.55069.

Texte intégral
Résumé :
Emulsions stabilized by solid particles are called Pickering emulsions, using diclofenac diethylamine for topical use. In this study, screening for the effect of the type of solid particles (bentonite 3%; Avicel RC-591 2.5%; and kaolin 15%) and soybean oil concentration (10%; 20%, and 30%) using the Taguchi orthogonal array method, with independent variables (type of solid particles and concentration of soybean oil, dependent variables (viscosity, pH, %EE, creaming index, globule size, and % cumulative penetration). The Pickering emulsion with Avicel RC-591 for solid particles produced a stabl
Styles APA, Harvard, Vancouver, ISO, etc.
38

Li, Yinghao, Ge Xu, Weiwei Li, Lishuang Lv, and Qiuting Zhang. "The Role of Ultrasound in the Preparation of Zein Nanoparticles/Flaxseed Gum Complexes for the Stabilization of Pickering Emulsion." Foods 10, no. 9 (2021): 1990. http://dx.doi.org/10.3390/foods10091990.

Texte intégral
Résumé :
Ultrasound is one of the most commonly used methods to prepare Pickering emulsions. In the study, zein nanoparticles-flaxseed gum (ZNP-FSG) complexes were fabricated through various preparation routes. Firstly, the ZNP-FSG complexes were prepared either through direct homogenization/ultrasonication of the zein and flaxseed gum mixture or through pretreatment of zein and/or flaxseed gum solutions by ultrasonication before homogenization. The Pickering emulsions were then produced with the various ZNP-FSG complexes prepared. ZNP-FSG complexes and the final emulsions were then characterized. We f
Styles APA, Harvard, Vancouver, ISO, etc.
39

Cuevas-Gómez, Andrea P., Berenice González-Magallanes, Izlia J. Arroyo-Maya, Gustavo F. Gutiérrez-López, Maribel Cornejo-Mazón та Humberto Hernández-Sánchez. "Squalene-Rich Amaranth Oil Pickering Emulsions Stabilized by Native α-Lactalbumin Nanoparticles". Foods 11, № 14 (2022): 1998. http://dx.doi.org/10.3390/foods11141998.

Texte intégral
Résumé :
The stabilization of Pickering emulsions by nanoparticles has drawn great interest in the field of food science and technology. In this study, α-Lactalbumin nanoparticles prepared by the desolvation and cross-linking method from protein solutions with initial pH values of 9 and 11 were used to stabilize squalene-rich amaranth oil Pickering o/w emulsions. The effect of different concentrations of nanoparticles on the size, size distribution, ζ potential, and emulsion stability was evaluated using dynamic light scattering, electron microscopy, and light backscattering. Dependence of the emulsion
Styles APA, Harvard, Vancouver, ISO, etc.
40

Li, Yu, Siyuan Fei, Deyang Yu, et al. "Preparation and Evaluation of Undaria pinnatifida Nanocellulose in Fabricating Pickering Emulsions for Protection of Astaxanthin." Foods 11, no. 6 (2022): 876. http://dx.doi.org/10.3390/foods11060876.

Texte intégral
Résumé :
Pickering emulsions stabilized from natural sources are often used to load unstable bio-active ingredients, such as astaxanthin (AXT), to improve their functionality. In this study, AXT-loaded Pickering emulsions were successfully prepared by 2,2,6,6-tetramethy-1-piperidine oxide (TEMPO)-oxidized cellulose nanofibers (TOCNFs) from Undaria pinnatifida. The morphology analysis showed that TOCNFs had a high aspect ratio and dispersibility, which could effectively prevent the aggregation of oil droplets. The stable emulsion was obtained after exploring the influence of different factors (ultrasoni
Styles APA, Harvard, Vancouver, ISO, etc.
41

Kılınç, Irem. "Pickering emulsion technology: An overview of stability and functionality in food processing." Food Nutrition Chemistry 3, no. 2 (2025): 354. https://doi.org/10.18686/fnc354.

Texte intégral
Résumé :
Emulsions stabilized by solid particles, known as Pickering emulsions, offer a compelling alternative to conventional surfactant-based emulsions, attracting considerable interest within the food sector. This review comprehensively examines the application of solid particles in stabilizing food emulsions, offering a detailed comparison with traditional surfactant-based methods. Additionally, this paper elucidates how Pickering emulsions, stabilized by particles at the oil-water interface, achieve superior stability, preventing coalescence and phase separation, which is crucial for extending the
Styles APA, Harvard, Vancouver, ISO, etc.
42

Du, Kuan, Beichen Yu, Yimin Xiong, et al. "Hydrodeoxygenation of Bio-Oil over an Enhanced Interfacial Catalysis of Microemulsions Stabilized by Amphiphilic Solid Particles." Catalysts 13, no. 3 (2023): 573. http://dx.doi.org/10.3390/catal13030573.

Texte intégral
Résumé :
Bio-oil emulsions were stabilized using coconut shell coke, modified amphiphilic graphene oxide, and hydrophobic nano-fumed silica as solid emulsifiers. The effects of different particles on the stability of bio-oil emulsions were discussed. Over 21 days, the average droplet size of raw bio-oil increased by 64.78%, while that of bio-oil Pickering emulsion stabilized by three particles only changed within 20%. The bio-oil Pickering emulsion stabilized by Ni/SiO2 was then used for catalytic hydrodeoxygenation. It was found that the bio-oil undergoes polymerization during catalytic hydrogenation.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Meng, Tao, Ruixue Bai, Weihao Wang, Xin Yang, Ting Guo, and Yaolei Wang. "Enzyme-Loaded Mesoporous Silica Particles with Tuning Wettability as a Pickering Catalyst for Enhancing Biocatalysis." Catalysts 9, no. 1 (2019): 78. http://dx.doi.org/10.3390/catal9010078.

Texte intégral
Résumé :
Pickering emulsion systems have created new opportunities for two-phase biocatalysis, however their catalytic performance is often hindered by biphasic mass transfer process relying on the interfacial area. In this study, lipase-immobilized mesoporous silica particles (LMSPs) are employed as both Pickering stabilizers and biocatalysts. A series of alkyl silanes with the different carbon length are used to modify LMSPs to obtain suitable wettability and enlarge the interfacial area of Pickering emulsion. The results show the water/paraffin oil Pickering emulsions stabilized by 8 carbon atoms si
Styles APA, Harvard, Vancouver, ISO, etc.
44

Rahmi, Ira Desri, Erliza Hambali, Farah Fahma, and Dwi Setyaningsih. "Pickering Emulsion Properties Generated by Nanofibrillated Cellulose Isolated from Oil Palm Fruit Bunch (OPEFB) as a Stabilizer." Journal of Fibers and Polymer Composites 2, no. 2 (2023): 81–98. http://dx.doi.org/10.55043/jfpc.v2i2.98.

Texte intégral
Résumé :
This study aims to find the optimal nanofibrillated cellulose (NFC) concentration isolated from oil palm empty fruit bunch (OPEFB) particles to form stable pickering emulsions against creaming and coalescence. The emulsification process is based on a combination of homogenizer and ultrasonication. Pickering emulsion was prepared by mixing the dispersed phase (palm oil) and the dispersing phase (NFC concentration of 0.05 - 0.7 w/v%) at the ratio of 10:90. Fresh emulsion has a milky white appearance and is homogeneous. However, some samples' creaming process occurred on the 30th day of storage.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Bains, Upinder, and Rajinder Pal. "Rheology and Catastrophic Phase Inversion of Emulsions in the Presence of Starch Nanoparticles." ChemEngineering 4, no. 4 (2020): 57. http://dx.doi.org/10.3390/chemengineering4040057.

Texte intégral
Résumé :
Emulsions stabilized by solid nanoparticles, referred to as Pickering emulsions, are becoming increasingly important in applications as they are free of surfactants. However, the bulk properties and stability of Pickering emulsions are far from being well understood. In this work, the rheological behavior and catastrophic phase inversion of emulsions in the presence of starch nanoparticles were studied using in-situ measurements of viscosity and electrical conductivity. The aqueous phase consisting of starch nanoparticles was added sequentially in increments of 5% vol. to the oil phase under a
Styles APA, Harvard, Vancouver, ISO, etc.
46

Pei, Xiaoyan, Jiang Liu, Wangyue Song, Dongli Xu, Zhe Wang, and Yanping Xie. "CO2-Switchable Hierarchically Porous Zirconium-Based MOF-Stabilized Pickering Emulsions for Recyclable Efficient Interfacial Catalysis." Materials 16, no. 4 (2023): 1675. http://dx.doi.org/10.3390/ma16041675.

Texte intégral
Résumé :
Stimuli-responsive Pickering emulsions are recently being progressively utilized as advanced catalyzed systems for green and sustainable chemical conversion. Hierarchically porous metal–organic frameworks (H-MOFs) are regarded as promising candidates for the fabrication of Pickering emulsions because of the features of tunable porosity, high specific surface area and structure diversity. However, CO2-switchable Pickering emulsions formed by hierarchically porous zirconium-based MOFs have never been seen. In this work, a novel kind of the amine-functionalized hierarchically porous UiO-66-(OH)2
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kawano, Shintaro, Toshiyuki Kida, Mitsuru Akashi, Hirofumi Sato, Motohiro Shizuma, and Daisuke Ono. "Preparation of Pickering emulsions through interfacial adsorption by soft cyclodextrin nanogels." Beilstein Journal of Organic Chemistry 11 (November 30, 2015): 2355–64. http://dx.doi.org/10.3762/bjoc.11.257.

Texte intégral
Résumé :
Background: Emulsions stabilized by colloidal particles are known as Pickering emulsions. To date, soft microgel particles as well as inorganic and organic particles have been utilized as Pickering emulsifiers. Although cyclodextrin (CD) works as an attractive emulsion stabilizer through the formation of a CD–oil complex at the oil–water interface, a high concentration of CD is normally required. Our research focuses on an effective Pickering emulsifier based on a soft colloidal CD polymer (CD nanogel) with a unique surface-active property. Results: CD nanogels were prepared by crosslinking he
Styles APA, Harvard, Vancouver, ISO, etc.
48

Cao, Minjie, and Luyun Cai. "Nanoparticle Emulsions Enhance the Inhibition of NLRP3." International Journal of Molecular Sciences 23, no. 17 (2022): 10168. http://dx.doi.org/10.3390/ijms231710168.

Texte intégral
Résumé :
Antibacterial delivery emulsions are potential materials for treating bacterial infections. Few studies have focused on the role and mechanism of emulsions in inflammation relief. Therefore, based on our previous analysis, in which the novel and natural Pickering emulsions stabilized by antimicrobial peptide nanoparticles were prepared, the regulation effect of emulsion on inflammasome was explored in silico, in vitro and in vivo. Firstly, the interactions between inflammasome components and parasin I or Pickering emulsion were predicted by molecular docking. Then, the inflammasome stimulation
Styles APA, Harvard, Vancouver, ISO, etc.
49

Ramos, Giselle Vallim Corrêa, Samantha Cristina de Pinho, Andresa Gomes, Gustavo César Dacanal, Paulo José do Amaral Sobral, and Izabel Cristina Freitas Moraes. "Designing Pickering Emulsions Stabilized by Modified Cassava Starch Nanoparticles: Effect of Curcumin Encapsulation." Processes 12, no. 7 (2024): 1348. http://dx.doi.org/10.3390/pr12071348.

Texte intégral
Résumé :
Curcumin is a hydrophobic bioactive compound, and its incorporation into lipid-based carriers can enhance its bioaccessibility and maintain its stability over time. Pickering emulsions are long-term stability systems, effective for encapsulation, protection, and delivery of bioactive compounds. This study aimed to produce Pickering oil-in-water (O/W) emulsions stabilized by cassava starch nanoparticles (native or modified by heat–moisture treatment (HMT)) with high kinetic stability to encapsulate curcumin. The effect of curcumin incorporation on emulsion features was also assessed, as well as
Styles APA, Harvard, Vancouver, ISO, etc.
50

Yu, De Hai, Zhao Yun Lin, and You Ming Li. "Pickering-Type Emulsions of ODSA Sizing Agent Stabilized by Nano-Montmorillonite and N-Dodecane." Applied Mechanics and Materials 319 (May 2013): 233–38. http://dx.doi.org/10.4028/www.scientific.net/amm.319.233.

Texte intégral
Résumé :
Octadecenylsuccinic anhydride (ODSA) is an internal sizing agent used to hydrophobize paper and paper board in the process of papermaking. Nano-montmorillonite (MMT) particles and n-dodecane were used as the stabilizer to prepare stable ODSA Pickering emulsions. The effects of pH value, particle concentration, hydrolysis resistance and paper sizing performance of the ODSA Pickering emulsions were investigated. It was found that the stability of ODSA emulsions first increased and then decreased as the pH value decreased. More stable oil-in-water (o/w) emulsion can be made using 10 vol.% n-dodec
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!