Littérature scientifique sur le sujet « ENERGY HARVESTING APPLICATIONS »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « ENERGY HARVESTING APPLICATIONS ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "ENERGY HARVESTING APPLICATIONS"
Pakrashi, Vikram, et Grzegorz Litak. « Energy harvesting and applications ». European Physical Journal Special Topics 228, no 7 (août 2019) : 1535–36. http://dx.doi.org/10.1140/epjst/e2019-900118-y.
Texte intégralGayakawad, Kavyashree C., Akshaykumar Gaonkar, B. Goutami et Vinayak P. Miskin. « Acoustic Energy Harvesting Using Piezoelectric Effect for Various Low Power Applications ». Bonfring International Journal of Research in Communication Engineering 6, Special Issue (30 novembre 2016) : 24–29. http://dx.doi.org/10.9756/bijrce.8194.
Texte intégralElsheikh, Ammar. « Bistable Morphing Composites for Energy-Harvesting Applications ». Polymers 14, no 9 (5 mai 2022) : 1893. http://dx.doi.org/10.3390/polym14091893.
Texte intégralGordón, Carlos, Fabián Salazar, Cristina Gallardo et Julio Cuji. « Storage Systems for Energy Harvesting Applications ». IOP Conference Series : Earth and Environmental Science 1141, no 1 (1 février 2023) : 012009. http://dx.doi.org/10.1088/1755-1315/1141/1/012009.
Texte intégralSuzuki, Yuji. « Energy Harvesting ». Journal of The Institute of Image Information and Television Engineers 64, no 2 (2010) : 198–200. http://dx.doi.org/10.3169/itej.64.198.
Texte intégralRoscow, J., Y. Zhang, J. Taylor et C. R. Bowen. « Porous ferroelectrics for energy harvesting applications ». European Physical Journal Special Topics 224, no 14-15 (novembre 2015) : 2949–66. http://dx.doi.org/10.1140/epjst/e2015-02600-y.
Texte intégralWang, Zhao, Xumin Pan, Yahua He, Yongming Hu, Haoshuang Gu et Yu Wang. « Piezoelectric Nanowires in Energy Harvesting Applications ». Advances in Materials Science and Engineering 2015 (2015) : 1–21. http://dx.doi.org/10.1155/2015/165631.
Texte intégralHorowitz, Stephen B., et Mark Sheplak. « Aeroacoustic applications of acoustic energy harvesting ». Journal of the Acoustical Society of America 134, no 5 (novembre 2013) : 4155. http://dx.doi.org/10.1121/1.4831230.
Texte intégralGladden, Josh R. « Elastic energy harvesting : Materials and applications ». Journal of the Acoustical Society of America 141, no 5 (mai 2017) : 3689. http://dx.doi.org/10.1121/1.4988030.
Texte intégralChiriac, H., M. Ţibu, N. Lupu, I. Skorvanek et T. A. Óvári. « Nanocrystalline ribbons for energy harvesting applications ». Journal of Applied Physics 115, no 17 (7 mai 2014) : 17A320. http://dx.doi.org/10.1063/1.4864437.
Texte intégralThèses sur le sujet "ENERGY HARVESTING APPLICATIONS"
Martin, Benjamin Ryan. « Energy Harvesting Applications of Ionic Polymers ». Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/32024.
Texte intégralMaster of Science
Ersoy, Kurtulus. « Piezoelectric Energy Harvesting For Munitions Applications ». Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613589/index.pdf.
Texte intégraland ORCAD PSPICE®
, and finite element method models generated in ATILA®
. Optimum energy storage methods are considered.
Sze, Ngok Man. « Switching converter techniques for energy harvesting applications / ». View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?ECED%202007%20SZE.
Texte intégralOliva, Alexander. « Multi-source energy harvesting for lightweight applications ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119580.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 193-197).
This thesis analyzes, designs and tests circuit topologies for simultaneous energy harvesting from solar and 915-MHz RF energy sources. An important design objective is to minimize system weight while maximizing output power and operating time for applications in the sub-170-mg and single-mW ranges. The resulting energy harvesting system uses a unique approach of categorizing the harvesters as primary and auxiliary harvesters due to the power levels of each in relation to the high load demand. This work results in a 162-mg supercapacitor-powered system capable of powering a 2-V load at up to approximately 2-3 mW and a 150-mg battery-powered system capable of powering a 2-V load at up to 6 mW. The auxiliary RF harvester uses a fully-integrated charge pump to impedance-match to a rectenna with greater than 94% matching. The parasitic models developed for the RF harvester show errors less than 1.4% in the measured system.
by Alexander Oliva.
M. Eng.
Smilek, Jan. « Energy Harvesting Power Supply for MEMS Applications ». Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-386765.
Texte intégralWang, X., S. Dong, Ashraf F. Ashour et B. Han. « Energy-harvesting concrete for smart and sustainable infrastructures ». A Springer Nature Publication, 2021. http://hdl.handle.net/10454/18553.
Texte intégralConcrete with smart and functional properties (e.g., self-sensing, self-healing, and energy-harvesting) represents a transformative direction in the field of construction materials. Energy-harvesting concrete has the capability to store or convert the ambient energy (e.g., light, thermal, and mechanical energy) for feasible uses, alleviating global energy and pollution problems as well as reducing carbon footprint. The employment of energy-harvesting concrete can endow infrastructures (e.g., buildings, railways, and highways) with energy self-sufficiency, effectively promoting sustainable infrastructure development. This paper provides a systematic overview on the principles, fabrication, properties, and applications of energy-harvesting concrete (including light-emitting, thermal-storing, thermoelectric, pyroelectric, and piezoelectric concretes). The paper concludes with an outline of some future challenges and opportunities in the application of energy-harvesting concrete in sustainable infrastructures.
The full-text of this article will be released for public view at the end of the publisher embargo on 19 Jul 2022.
Constantinou, Peter. « A magnetically sprung generator for energy harvesting applications ». Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508049.
Texte intégralSimone, Dominic J. « Modeling a linear generator for energy harvesting applications ». Thesis, Monterey, California : Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44669.
Texte intégralThe intent of this research is to draw attention to linear generators and their potential uses. A flexible model of a linear generator created in MATLAB Simulink is presented. The model is a three-phase, 12-pole, non-salient, synchronous permanent magnet linear generator with a non-sinusoidal back electromotive force (EMF) but could easily be adapted to fit any number of poles or any back EMF waveform. The emerging technologies related to linear generators such as wave energy converters and free-piston engines are explained. A selection of these technologies is generically modeled and their results are discussed and contrasted against one another. The model clearly demonstrates the challenges of using linear generators in different scenarios. It also proves itself a useful tool in analyzing and improving the performance of linear generators under a variety of circumstances.
Choi, Yeonsik. « Novel functional polymeric nanomaterials for energy harvesting applications ». Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/282877.
Texte intégralThompson, Nicholas John. « Singlet exciton fission : applications to solar energy harvesting ». Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89959.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 141-147).
Singlet exciton fission transforms a single molecular excited state into two excited states of half the energy. When used in solar cells it can double the photocurrent from high energy photons increasing the maximum theoretical power efficiency to greater than 40%. The steady state singlet fission rate can be perturbed under an external magnetic field. I utilize this effect to monitor the yield of singlet fission within operating solar cells. Singlet fission approaches unity efficiency in the organic semiconductor pentacene for layers more than 5 nm thick. Using organic solar cells as a model system for extracting photocurrent from singlet fission, I exceed the convention limit of 1 electron per photon, realizing 1.26 electrons per incident photon. One device architecture proposed for high power efficiency singlet fission solar cells coats a conventional inorganic semiconducting solar with a singlet fission molecule. This design requires energy transfer from the non-emissive triplet exciton to the semiconducting material, a process which has not been demonstrated. I prove that colloidal nanocrystals accept triplet excitons from the singlet fission molecule tetracene. This enables future devices where the combine singlet fission material and nanocrystal system energy transfer triplet excitons produced by singlet fission to a silicon solar cell.
by Nicholas J. Thompson.
Ph. D.
Livres sur le sujet "ENERGY HARVESTING APPLICATIONS"
Kaźmierski, Tom J. Energy Harvesting Systems : Principles, Modeling and Applications. New York, NY : Springer Science+Business Media, LLC, 2011.
Trouver le texte intégralIkram, Muhammad, Ali Raza et Salamat Ali. 2D-Materials for Energy Harvesting and Storage Applications. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96021-6.
Texte intégralInnovative materials and systems for energy harvesting applications. Hershey, PA : Engineering Science Reference, 2015.
Trouver le texte intégralÁlvarez-Carulla, Albert, Jordi Colomer-Farrarons et Pere Lluís Miribel Català. Self-powered Energy Harvesting Systems for Health Supervising Applications. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5619-5.
Texte intégralKyung, Chong-Min, dir. Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. Dordrecht : Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9990-4.
Texte intégralZaman, Noor, Vasaki Ponnusamy, Tang Jung Low et Anang Hudaya Muhamad Amin. Biologically-inspired energy harvesting through wireless sensor technologies. Hershey, PA : Information Science Reference, 2016.
Trouver le texte intégralShalan, Ahmed Esmail, Abdel Salam Hamdy Makhlouf et Senentxu Lanceros‐Méndez, dir. Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94319-6.
Texte intégralFerreira Carvalho, Carlos Manuel, et Nuno Filipe Silva Veríssimo Paulino. CMOS Indoor Light Energy Harvesting System for Wireless Sensing Applications. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21617-1.
Texte intégralDhar, Nibir K., et Achyut K. Dutta. Energy harvesting and storage : Materials, devices,and applications : 5-6 April 2010, Orlando, Florida, United States. Sous la direction de Wijewarnasuriya Priyalal S et SPIE (Society). Bellingham, Wash : SPIE, 2010.
Trouver le texte intégralDhar, Nibir K., Achyut K. Dutta et Priyalal S. Wijewarnasuriya. Energy harvesting and storage : Materials, devices,and applications II : 25-28 April 2011, Orlando, Florida, United States. Bellingham, Wash : SPIE, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "ENERGY HARVESTING APPLICATIONS"
Dauksevicius, Rolanas, et Danick Briand. « Energy Harvesting ». Dans Material-Integrated Intelligent Systems - Technology and Applications, 479–528. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527679249.ch21.
Texte intégralLata, Sonam, et Shabana Mehfuz. « Efficient Ambient Energy-Harvesting Sources with Potential for IoT and Wireless Sensor Network Applications ». Dans Energy Harvesting, 19–63. Boca Raton : Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003218760-2.
Texte intégralDi Paolo Emilio, Maurizio. « Applications of Energy Harvesting ». Dans Microelectronic Circuit Design for Energy Harvesting Systems, 155–65. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47587-5_11.
Texte intégralDoğan, Mustafa, Sıtkı Çağdaş İnam et Ö. Orkun Sürel. « Efficient Energy Harvesting Systems for Vibration and Wireless Sensor Applications ». Dans Energy Harvesting and Energy Efficiency, 87–106. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49875-1_4.
Texte intégralYlli, Klevis, et Yiannos Manoli. « Industrial Applications ». Dans Energy Harvesting for Wearable Sensor Systems, 95–113. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4448-8_7.
Texte intégralPatil, Sneha, Mahesh Goudar et Ravindra Kharadkar. « Exploration of Indoor Energy Harvesting ». Dans Digital Technologies and Applications, 584–91. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01942-5_58.
Texte intégralParida, Kaushik, et Ramaraju Bendi. « Piezoelectric Energy Harvesting and Piezocatalysis ». Dans Nano-catalysts for Energy Applications, 171–89. Boca Raton : CRC Press, 2021. http://dx.doi.org/10.1201/9781003082729-10.
Texte intégralFerreira Carvalho, Carlos Manuel, et Nuno Filipe Silva Veríssimo Paulino. « Energy Harvesting Electronic Systems ». Dans CMOS Indoor Light Energy Harvesting System for Wireless Sensing Applications, 7–42. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21617-1_2.
Texte intégralFerreira Carvalho, Carlos Manuel, et Nuno Filipe Silva Veríssimo Paulino. « Proposed Energy Harvesting System ». Dans CMOS Indoor Light Energy Harvesting System for Wireless Sensing Applications, 117–56. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21617-1_5.
Texte intégralRaju Thoutam, Laxman, et Sammaiah Pulla. « Piezoelectric Materials for Energy Harvesting Applications ». Dans Energy Harvesting and Storage Devices, 1–24. New York : CRC Press, 2023. http://dx.doi.org/10.1201/9781003340539-1.
Texte intégralActes de conférences sur le sujet "ENERGY HARVESTING APPLICATIONS"
Ruchi, Ruchi, Akshat Savant, Abdul Kalam, Yugal Khurana, Prachi Prachi et Samir Kumar. « Energy Harvesting For IoT Applications ». Dans 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE, 2022. http://dx.doi.org/10.1109/icesc54411.2022.9885464.
Texte intégralJain, Akash, Bharat Bansal et Meghna Hada. « Energy Harvesting for Portable Applications ». Dans 2014 Texas Instruments India Educators' Conference (TIIEC). IEEE, 2014. http://dx.doi.org/10.1109/tiiec.2014.027.
Texte intégralMonroe, J. G., Erick S. Vasquez, Zachary S. Aspin, John D. Fairley, Keisha B. Walters, Matthew J. Berg et Scott M. Thompson. « Energy harvesting via ferrofluidic induction ». Dans SPIE Sensing Technology + Applications, sous la direction de Nibir K. Dhar et Achyut K. Dutta. SPIE, 2015. http://dx.doi.org/10.1117/12.2178419.
Texte intégralPatil, Akshay, Mayur Jadhav, Shreyas Joshi, Elton Britto et Apurva Vasaikar. « Energy harvesting using piezoelectricity ». Dans 2015 International Conference on Energy Systems and Applications. IEEE, 2015. http://dx.doi.org/10.1109/icesa.2015.7503403.
Texte intégralWeddell, Alex S., et Michele Magno. « Energy Harvesting for Smart City Applications ». Dans 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE, 2018. http://dx.doi.org/10.1109/speedam.2018.8445323.
Texte intégralKarakaya, Emrullah, Cenk Mulazimoglu, Sultan Can, A. Egemen Yilmaz et Baris Akaoglu. « Metamaterial design for energy harvesting applications ». Dans 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE, 2016. http://dx.doi.org/10.1109/siu.2016.7495789.
Texte intégralLahoti, Suyash, et Mandar D. Kulkarni. « Shape Optimization for Energy Harvesting Applications ». Dans AIAA Scitech 2020 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-2262.
Texte intégralDeLong, B., C. C. Chen et J. L. Volakis. « Wireless energy harvesting for medical applications ». Dans 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2015. http://dx.doi.org/10.1109/aps.2015.7304995.
Texte intégralBierschenk, Jim. « Optimized thermoelectrics for energy harvesting applications ». Dans 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693950.
Texte intégralSuslowicz, Charles, Archanaa S. Krishnan et Patrick Schaumont. « Optimizing Cryptography in Energy Harvesting Applications ». Dans CCS '17 : 2017 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA : ACM, 2017. http://dx.doi.org/10.1145/3139324.3139329.
Texte intégralRapports d'organisations sur le sujet "ENERGY HARVESTING APPLICATIONS"
Shtein, Max, Kevin Pipe et Peter Peumans. Solar and Thermal Energy Harvesting Textile Composites for Aerospace Applications. Fort Belvoir, VA : Defense Technical Information Center, juin 2012. http://dx.doi.org/10.21236/ada563065.
Texte intégralBrumer, Paul, et Gregory Scholes. Photoinduced Electronic Energy Transfer : Theoretical and Experimental Issues for Light Harvesting Applications. Fort Belvoir, VA : Defense Technical Information Center, octobre 2013. http://dx.doi.org/10.21236/ada591816.
Texte intégralPrezhdo, Oleg. Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Energy Applications. Office of Scientific and Technical Information (OSTI), mai 2015. http://dx.doi.org/10.2172/1179082.
Texte intégral