Littérature scientifique sur le sujet « Ependymal stem progenitor cells »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ependymal stem progenitor cells ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Ependymal stem progenitor cells"

1

Xing, Liujing, Teni Anbarchian, Jonathan M. Tsai, Giles W. Plant та Roeland Nusse. "Wnt/β-catenin signaling regulates ependymal cell development and adult homeostasis". Proceedings of the National Academy of Sciences 115, № 26 (2018): E5954—E5962. http://dx.doi.org/10.1073/pnas.1803297115.

Texte intégral
Résumé :
In the adult mouse spinal cord, the ependymal cell population that surrounds the central canal is thought to be a promising source of quiescent stem cells to treat spinal cord injury. Relatively little is known about the cellular origin of ependymal cells during spinal cord development, or the molecular mechanisms that regulate ependymal cells during adult homeostasis. Using genetic lineage tracing based on the Wnt target geneAxin2, we have characterized Wnt-responsive cells during spinal cord development. Our results revealed that Wnt-responsive progenitor cells are restricted to the dorsal m
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kakogiannis, Dimitrios, Michaela Kourla, Dimitrios Dimitrakopoulos, and Ilias Kazanis. "Reversal of Postnatal Brain Astrocytes and Ependymal Cells towards a Progenitor Phenotype in Culture." Cells 13, no. 8 (2024): 668. http://dx.doi.org/10.3390/cells13080668.

Texte intégral
Résumé :
Astrocytes and ependymal cells have been reported to be able to switch from a mature cell identity towards that of a neural stem/progenitor cell. Astrocytes are widely scattered in the brain where they exert multiple functions and are routinely targeted for in vitro and in vivo reprogramming. Ependymal cells serve more specialized functions, lining the ventricles and the central canal, and are multiciliated, epithelial-like cells that, in the spinal cord, act as bi-potent progenitors in response to injury. Here, we isolate or generate ependymal cells and post-mitotic astrocytes, respectively,
Styles APA, Harvard, Vancouver, ISO, etc.
3

Burket, Noah, Jia Wang, Hongyu Gao, et al. "EPCO-60. EXPRESSION OF EARLY PROGENITOR MARKERS WITHIN NF2-ASSOCIATED SPINAL EPENDYMOMA." Neuro-Oncology 26, Supplement_8 (2024): viii15. http://dx.doi.org/10.1093/neuonc/noae165.0059.

Texte intégral
Résumé :
Abstract Spinal ependymomas (SP-EPNs) are intramedullary spinal tumors commonly found in patients with NF2-related schwannomatosis. Recent work using bulkRNA sequencing has suggested that SP-EPNs express a molecular signature most similar to ependymal cells. However, this type of sequencing may miss rare stem cell populations within tumors. The aim of this study was to assess the spatial heterogeneity within NF2-associated SP-EPNs and explore whether a stem cell population exists within SP-EPNs. Spatial transcriptomics (ST) was performed on a SP-EPN sample previously resected from a patient wi
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mothe, Andrea J., Iris Kulbatski, Rita L. van Bendegem, et al. "Analysis of Green Fluorescent Protein Expression in Transgenic Rats for Tracking Transplanted Neural Stem/Progenitor Cells." Journal of Histochemistry & Cytochemistry 53, no. 10 (2005): 1215–26. http://dx.doi.org/10.1369/jhc.5a6639.2005.

Texte intégral
Résumé :
Green fluorescent protein (GFP) expression was evaluated in tissues of different transgenic rodents—Sprague-Dawley (SD) rat strain [SD-Tg(GFP)Bal], W rat strain [Wistar-TgN(CAG-GFP)184ys], and M mouse strain [Tg(GFPU)5Nagy/J]—by direct fluorescence of native GFP expression and by immunohistochemistry. The constitutively expressing GFP transgenic strains showed tissue-specific differences in GFP expression, and GFP immunohistochemistry amplified the fluorescent signal. The fluorescence of stem/progenitor cells cultured as neurospheres from the ependymal region of the adult spinal cord from the
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rodriguez-Jimenez, Francisco, Ana Alastrue-Agudo, Miodrag Stojkovic, Slaven Erceg, and Victoria Moreno-Manzano. "Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation." International Journal of Molecular Sciences 16, no. 11 (2015): 26608–18. http://dx.doi.org/10.3390/ijms161125981.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rodriguez-Jimenez, Francisco Javier, Ana Alastrue, Miodrag Stojkovic, Slaven Erceg, and Victoria Moreno-Manzano. "Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells." Cell and Tissue Research 365, no. 2 (2016): 295–307. http://dx.doi.org/10.1007/s00441-016-2421-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Finkel, Zachary, Fatima Esteban, Brianna Rodriguez, Tianyue Fu, Xin Ai, and Li Cai. "Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease." Cells 10, no. 8 (2021): 2045. http://dx.doi.org/10.3390/cells10082045.

Texte intégral
Résumé :
Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, maintenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cerebrospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master tran
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gotoh, Yukiko. "IL2 Neural stem cell regulation and brain development." Neuro-Oncology Advances 3, Supplement_6 (2021): vi1. http://dx.doi.org/10.1093/noajnl/vdab159.001.

Texte intégral
Résumé :
Abstract Quiescent neural stem cells (NSCs) in the adult mouse brain are the source of neurogenesis that regulates innate and adaptive behaviors. Adult NSCs in the subventricular zone (SVZ) are derived from a subpopulation of embryonic neural stem-progenitor cells (NPCs) that is characterized by a slower cell cycle relative to the more abundant rapid cycling NPCs that build the brain. We have previously shown that slow cell cycle can cause the establishment of adult NSCs at the SVZ, although the underlying mechanism remains unknown. We found that Notch and an effector Hey1 form a module that i
Styles APA, Harvard, Vancouver, ISO, etc.
9

Makrygianni, Evanthia A., and George P. Chrousos. "Neural Progenitor Cells and the Hypothalamus." Cells 12, no. 14 (2023): 1822. http://dx.doi.org/10.3390/cells12141822.

Texte intégral
Résumé :
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and au
Styles APA, Harvard, Vancouver, ISO, etc.
10

Donato, Sarah V., and Matthew K. Vickaryous. "Radial Glia and Neuronal-like Ependymal Cells Are Present within the Spinal Cord of the Trunk (Body) in the Leopard Gecko (Eublepharis macularius)." Journal of Developmental Biology 10, no. 2 (2022): 21. http://dx.doi.org/10.3390/jdb10020021.

Texte intégral
Résumé :
As is the case for many lizards, leopard geckos (Eublepharis macularius) can self-detach a portion of their tail to escape predation, and then regenerate a replacement complete with a spinal cord. Previous research has shown that endogenous populations of neural stem/progenitor cells (NSPCs) reside within the spinal cord of the original tail. In response to tail loss, these NSPCs are activated and contribute to regeneration. Here, we investigate whether similar populations of NSPCs are found within the spinal cord of the trunk (body). Using a long-duration 5-bromo-2′-deoxyuridine pulse-chase e
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Ependymal stem progenitor cells"

1

MARCUZZO, STEFANIA. "New insights in the understanding of motor neuron disease by longitudinal brain and muscle MRI analysis and characterization of spinal cord-derived stem cells in G93-SOD1 mouse model of ALS." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/43854.

Texte intégral
Résumé :
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, neurodegenerative disorder caused by the degeneration of motor neurons in the CNS, which results in complete paralysis of skeletal muscles. To establish the timeframe of motor neuron degeneration in relation to muscle atrophy in motor neuron disease, we have used MRI to monitor changes throughout disease in brain and skeletal muscle of G93A-SOD1 mice, a purported model of ALS. Longitudinal MRI examination of the same animals indicated that muscle volume in the G93A-SOD1 mice was significantly reduced from as early as week 8 of life,
Styles APA, Harvard, Vancouver, ISO, etc.
2

Noisa, Parinya. "Characterization of neural progenitor/stem cells derived from human embryonic stem cells." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5712.

Texte intégral
Résumé :
Human embryonic stem cells (hESCs) are able to proliferate indefinitely without losing their ability to differentiate into multiple cell types of all three germ layers. Due to these fascinating properties, hESCs have promise as a robust cell source for regenerative medicine and as an in vitro model for the study of human development. In my PhD study, I have investigated the neural differentiation process of hESCs using our established protocol, identified characteristics associated with each stage of the differentiation and explored possible signalling pathways underlying these dynamic changes
Styles APA, Harvard, Vancouver, ISO, etc.
3

Marshall, Gregory Paul. "Neurospheres and multipotent astrocytic stem cells neural progenitor cells rather than neural stem cells /." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0010047.

Texte intégral
Résumé :
Thesis (Ph.D.)--University of Florida, 2005.<br>Typescript. Title from title page of source document. Document formatted into pages; contains 97 pages. Includes Vita. Includes bibliographical references.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Greenhowe, Jennifer. "Stem and progenitor cells in wound healing." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:87a9a7a1-b595-458a-913f-64497174f988.

Texte intégral
Résumé :
As more patients with large body surface area burns are surviving and requiring reconstructive surgery, there is a necessity for advances in the provision of bioengineered alternatives to autologous skin cover. The aims of this Thesis are to identify feasible source tissues of Endothelial Colony Forming Cells and Mesenchymal Stem/Stromal Cells for microvascular network formation in vitro with three-dimensional dermal substitute scaffolds. The working hypothesis is that pre-vascularised dermal scaffolds will result in better quality scarring when used with split thickness skin grafts. Human umb
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pearce, Daniel. "Intracellular analysis of stem and progenitor cells." Thesis, Kingston University, 2001. http://eprints.kingston.ac.uk/20685/.

Texte intégral
Résumé :
A population of rare pluripotential stem cells with extensive proliferative and self-renewal capabilities sustains haemopoiesis throughout life. Such cells, capable of differentiating into any haemopoietic lineage are required for gene therapy, ex-vivo expansion and stem cell transplantation strategies. It is currently not possible to positively identify these cells; their presence can only be retrospectively assessed through elaborate, time consuming culture techniques and animal repopulating studies. Stem cells can be isolated through negative selection, a complex and very expensive procedur
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chavez, Garcia Edison. "Phosphoinositides regulation and function in the ciliary compartment of Neural stem cells and Ependymal cells." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/221625.

Texte intégral
Résumé :
This thesis describes the work that I have carried out in the Laboratory of Neurophysiolgy at the Université Libre de Bruxelles, under the supervision of Prof. Serge Schiffmann, in collaboration with Prof. Stéphane Schurmans of Université of Liège.The work is divided in two distinct but related projects and the results section is thus divided into two main chapters. The results described are presented in the form of two manuscripts, the first chapter is named “Ciliary phosphoinositides regulation by INPP5E controls Shh signaling by allowing trafficking of Gpr161 in neural stem cells primar
Styles APA, Harvard, Vancouver, ISO, etc.
7

Neilson, Kirstie Jane. "Differentiation of mouse embryonic stem cells into endothelial progenitor cells." Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Addicks, Gregory Charles. "Epigenetic Regulation of Muscle Stem and Progenitor Cells." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37112.

Texte intégral
Résumé :
Epigenetic mechanisms are of fundamental importance for resolving and maintaining cellular identity. The mechanisms regulating muscle stem and progenitor cell identity have ramifications for understanding all aspects of myogenesis. The epigenetic mechanisms regulating muscle stem cells are therefore important aspects for understanding the regulation of muscle regeneration and maintenance. Important roles for the trithorax H3K4 histone methyltransferase (HMT) MLL1 have been established for early embryogenesis, and for hematopoietic and neural identity. Here, using a conditional Mll1 knockout
Styles APA, Harvard, Vancouver, ISO, etc.
9

Schütte, Judith. "Analysis of regulatory networks in blood stem/progenitor cells." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648631.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ma, Kwai-yee Stephanie. "Identification and characterization of tumorigenic liver cancer stem/progenitor cells." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39557534.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Ependymal stem progenitor cells"

1

Reynolds, Brent A., and Loic P. Deleyrolle. Neural progenitor cells: Methods and protocols. Humana Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

American Association of Blood Banks. Progenitor Cell Standards Task Force., ed. Standards for hematopoietic progenitor cells. American Association of Blood Banks, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Atala, Anthony. Progenitor and stem cell technologies and therapies. Woodhead Publishing, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

American Association of Blood Banks., ed. Standards for hematopoietic progenitor cell services. 2nd ed. American Association of Blood Banks, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Arturo, Álvarez-Buylla, and García-Verdugo José Manuel, eds. Identification and characterization of neural progenitor cells in the adult mammalian brain. Springer, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

American Association of Blood Banks. Standards for hematopoietic progenitor cell and cellular product services. 3rd ed. American Association of Blood Banks, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mendelson, Avital. Chondrogenesis of Stem/Progenitor Cells by Chemotaxis Using Novel Cell Homing Systems. [publisher not identified], 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

International Workshop "Novel Angiogenic Mechanisms" (2002 Columbus, Ohio). Novel angiogenic mechanisms: Role of circulating progenitor endothelial cells. Kluwer Academic/Plenum, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chu, Peter Pui Tak. Retroviral-mediated human adenosine deaminase gene transfer into human hematopoietic progenitor and stem cells. National Library of Canada, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Joglekar, Mugdha V., and Anandwardhan A. Hardikar. Progenitor Cells: Methods and Protocols. Springer New York, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Ependymal stem progenitor cells"

1

Cetrulo, Curtis L., and Margaret J. Starnes. "Perinatal Endothelial Progenitor Cells." In Perinatal Stem Cells. John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470480151.ch7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Keller, Patricia J., Lisa M. Arendt, and Charlotte Kuperwasser. "Human Mammary Epithelial Stem/Progenitor Cells." In Stem Cells Handbook. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7696-2_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Itzhaki-Alfia, Ayelet, and Jonathan Leor. "Resident Cardiac Progenitor Cells." In Adult and Pluripotent Stem Cells. Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8657-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Horie, Nobutaka. "Neural Stem Cells/Neuronal Progenitor Cells." In Cell Therapy Against Cerebral Stroke. Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56059-3_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Parolini, Ornella, Debashree De, Melissa Rodrigues, and Maddalena Caruso. "Placental Stem/Progenitor Cells: Isolation and Characterization." In Perinatal Stem Cells. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1118-9_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rodewald, Hans-Reimer. "Epithelial Stem/Progenitor Cells in Thymus Organogenesis." In Adult Stem Cells. Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-732-1_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Di Nardo, Paolo, and Francesca Pagliari. "Cardiac Progenitor Cell Extraction from Human Auricles." In Adult Stem Cells. Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6756-8_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Honorio, Sofia, Hangwen Li, and Dean G. Tang. "Prostate Cancer Stem/Progenitor Cells." In Stem Cells and Cancer. Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-933-8_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Geraerts, Martine, and Catherine M. Verfaillie. "Adult Stem and Progenitor Cells." In Engineering of Stem Cells. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/10_2008_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pedini, Francesca, Mary Anna Venneri, and Ann Zeuner. "Hematopoietic Stem/Progenitor Cells: Response to Chemotherapy." In Stem Cells and Cancer Stem Cells, Volume 6. Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2993-3_29.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Ependymal stem progenitor cells"

1

Sharma, Vishal P., and Michael E. Geusz. "Abstract 268: Circadian rhythms of glioma stem cells and progenitor cells." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-268.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lou, Yuanhan. "Neural stem/progenitor cells in spinal cord injury treatment." In Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), edited by Alan Wang. SPIE, 2024. http://dx.doi.org/10.1117/12.3013168.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hawkins, Finn J., Tyler Longmire, Laertis Oikonomou, and Darrell N. Kotton. "Directed Differentiation Of Mouse Embryonic Stem Cells Into Primordial Lung Progenitor Cells." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a6348.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tao, Luwei, Amy Roberts, Karen Dunphy, Haoheng Yan, and D. Joseph Jerry. "Abstract B61: Regulation of mammary stem/progenitor cells by p53." In Abstracts: First AACR International Conference on Frontiers in Basic Cancer Research--Oct 8–11, 2009; Boston MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.fbcr09-b61.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

San, Isabelle V. Leefa Chong, Gaelle Prost, and Ulrike Nuber. "Abstract A09: Effects of Podocalyxin on neural stem/progenitor cells." In Abstracts: AACR Special Conference: Advances in Brain Cancer Research; May 27-30, 2015; Washington, DC. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.brain15-a09.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nguyen, T. S., D. Verma, C. Graf, D. S. Krause, and W. Ruf. "EPCR Raft Signaling Controls Activity of Hematopoietic Progenitor and Stem Cells." In 63rd Annual Meeting of the Society of Thrombosis and Haemostasis Research. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1680099.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lee, Y.-S., G. Collins, and T. Livingston Arinzeh. "Neural differentiation of human neural stem/progenitor cells on piezoelectric scaffolds." In 2010 36th Annual Northeast Bioengineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/nebc.2010.5458264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Visvader, JE, and GJ Lindeman. "Abstract BL1: Deciphering stem and progenitor cells to understand breast cancer." In Abstracts: 2019 San Antonio Breast Cancer Symposium; December 10-14, 2019; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-bl1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lannagan, Tamsin, Susan Woods, Laura Vrbanac, et al. "Abstract 1721: Desmoplasia stem and progenitor cells within the tumor microenvironment." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-1721.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yin, Gang, Vinny Craveiro, Jennie Holmberg, et al. "Abstract 3405: Epithelial ovarian cancer stem cells are the source of metastatic progenitor cells." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3405.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Ependymal stem progenitor cells"

1

Shull, James D. Mammary Stem/Progenitor Cells and Cancer Susceptibility. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada567916.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Paguirigan, Amy L. Development of Micro-Scale Assays of Mammary Stem and Progenitor Cells. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada487181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sullivan, Genevieve M. The Regenerative Response of Endogenous Neural Stem/Progenitor Cells to Traumatic Brain Injury. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ad1012867.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lewis, Michael T. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada462432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lewis, Michael T. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation. Defense Technical Information Center, 2007. http://dx.doi.org/10.21236/ada482708.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Liu, Can. MicroRNA Regulation of CD44+ Prostate Tumor Stem/Progenitor Cells and Prostate Cancer Development/Metastasis. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada580115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Halevy, Orna, Sandra Velleman, and Shlomo Yahav. Early post-hatch thermal stress effects on broiler muscle development and performance. United States Department of Agriculture, 2013. http://dx.doi.org/10.32747/2013.7597933.bard.

Texte intégral
Résumé :
In broilers, the immediate post-hatch handling period exposes chicks to cold or hot thermal stress, with potentially harmful consequences to product quantity and quality that could threaten poultry meat marketability as a healthy, low-fat food. This lower performance includes adverse effects on muscle growth and damage to muscle structure (e.g., less protein and more fat deposition). A leading candidate for mediating the effects of thermal stress on muscle growth and development is a unique group of skeletal muscle cells known as adult myoblasts (satellite cells). Satellite cells are multipote
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!