Articles de revues sur le sujet « Ependymal stem progenitor cells »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Ependymal stem progenitor cells ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Xing, Liujing, Teni Anbarchian, Jonathan M. Tsai, Giles W. Plant та Roeland Nusse. "Wnt/β-catenin signaling regulates ependymal cell development and adult homeostasis". Proceedings of the National Academy of Sciences 115, № 26 (2018): E5954—E5962. http://dx.doi.org/10.1073/pnas.1803297115.
Texte intégralKakogiannis, Dimitrios, Michaela Kourla, Dimitrios Dimitrakopoulos, and Ilias Kazanis. "Reversal of Postnatal Brain Astrocytes and Ependymal Cells towards a Progenitor Phenotype in Culture." Cells 13, no. 8 (2024): 668. http://dx.doi.org/10.3390/cells13080668.
Texte intégralBurket, Noah, Jia Wang, Hongyu Gao, et al. "EPCO-60. EXPRESSION OF EARLY PROGENITOR MARKERS WITHIN NF2-ASSOCIATED SPINAL EPENDYMOMA." Neuro-Oncology 26, Supplement_8 (2024): viii15. http://dx.doi.org/10.1093/neuonc/noae165.0059.
Texte intégralMothe, Andrea J., Iris Kulbatski, Rita L. van Bendegem, et al. "Analysis of Green Fluorescent Protein Expression in Transgenic Rats for Tracking Transplanted Neural Stem/Progenitor Cells." Journal of Histochemistry & Cytochemistry 53, no. 10 (2005): 1215–26. http://dx.doi.org/10.1369/jhc.5a6639.2005.
Texte intégralRodriguez-Jimenez, Francisco, Ana Alastrue-Agudo, Miodrag Stojkovic, Slaven Erceg, and Victoria Moreno-Manzano. "Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation." International Journal of Molecular Sciences 16, no. 11 (2015): 26608–18. http://dx.doi.org/10.3390/ijms161125981.
Texte intégralRodriguez-Jimenez, Francisco Javier, Ana Alastrue, Miodrag Stojkovic, Slaven Erceg, and Victoria Moreno-Manzano. "Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells." Cell and Tissue Research 365, no. 2 (2016): 295–307. http://dx.doi.org/10.1007/s00441-016-2421-y.
Texte intégralFinkel, Zachary, Fatima Esteban, Brianna Rodriguez, Tianyue Fu, Xin Ai, and Li Cai. "Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease." Cells 10, no. 8 (2021): 2045. http://dx.doi.org/10.3390/cells10082045.
Texte intégralGotoh, Yukiko. "IL2 Neural stem cell regulation and brain development." Neuro-Oncology Advances 3, Supplement_6 (2021): vi1. http://dx.doi.org/10.1093/noajnl/vdab159.001.
Texte intégralMakrygianni, Evanthia A., and George P. Chrousos. "Neural Progenitor Cells and the Hypothalamus." Cells 12, no. 14 (2023): 1822. http://dx.doi.org/10.3390/cells12141822.
Texte intégralDonato, Sarah V., and Matthew K. Vickaryous. "Radial Glia and Neuronal-like Ependymal Cells Are Present within the Spinal Cord of the Trunk (Body) in the Leopard Gecko (Eublepharis macularius)." Journal of Developmental Biology 10, no. 2 (2022): 21. http://dx.doi.org/10.3390/jdb10020021.
Texte intégralMokhtar, Doaa M., Ramy K. A. Sayed, Giacomo Zaccone, Marco Albano, and Manal T. Hussein. "Ependymal and Neural Stem Cells of Adult Molly Fish (Poecilia sphenops, Valenciennes, 1846) Brain: Histomorphometry, Immunohistochemical, and Ultrastructural Studies." Cells 11, no. 17 (2022): 2659. http://dx.doi.org/10.3390/cells11172659.
Texte intégralPark, Sang In, Jung Yeon Lim, Chang Hyun Jeong, et al. "Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Therapy Promotes Functional Recovery of Contused Rat Spinal Cord through Enhancement of Endogenous Cell Proliferation and Oligogenesis." Journal of Biomedicine and Biotechnology 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/362473.
Texte intégralMarcuzzo, Stefania, Dimos Kapetis, Renato Mantegazza, et al. "Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells." Experimental Neurology 253 (March 2014): 91–101. http://dx.doi.org/10.1016/j.expneurol.2013.12.007.
Texte intégralDonson, Andrew, Austin Gillen, Riemondy Kent, et al. "EPEN-31. SINGLE-CELL RNAseq OF CHILDHOOD EPENDYMOMA REVEALS DISTINCT NEOPLASTIC CELL SUBPOPULATIONS THAT IMPACT ETIOLOGY, MOLECULAR CLASSIFICATION AND OUTCOME." Neuro-Oncology 22, Supplement_3 (2020): iii314. http://dx.doi.org/10.1093/neuonc/noaa222.167.
Texte intégralRedmond, Stephanie A., María Figueres-Oñate, Kirsten Obernier, et al. "Development of Ependymal and Postnatal Neural Stem Cells and Their Origin from a Common Embryonic Progenitor." Cell Reports 27, no. 2 (2019): 429–41. http://dx.doi.org/10.1016/j.celrep.2019.01.088.
Texte intégralMitra, Siddhartha S., Abdullah H. Feroze, Sharareh Gholamin, et al. "Neural Placode Tissue Derived From Myelomeningocele Repair Serves as a Viable Source of Oligodendrocyte Progenitor Cells." Neurosurgery 77, no. 5 (2015): 794–802. http://dx.doi.org/10.1227/neu.0000000000000918.
Texte intégralLucini, Carla, and Claudia Gatta. "Glial Diversity and Evolution: Insights from Teleost Fish." Brain Sciences 15, no. 7 (2025): 743. https://doi.org/10.3390/brainsci15070743.
Texte intégralShinozuka, Takuma, and Shinji Takada. "Morphological and Functional Changes of Roof Plate Cells in Spinal Cord Development." Journal of Developmental Biology 9, no. 3 (2021): 30. http://dx.doi.org/10.3390/jdb9030030.
Texte intégralMarcuzzo, Stefania, Davide Isaia, Silvia Bonanno, et al. "FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice." Cells 8, no. 3 (2019): 279. http://dx.doi.org/10.3390/cells8030279.
Texte intégralMcDonough, Ashley, and Verónica Martínez-Cerdeño. "Endogenous Proliferation after Spinal Cord Injury in Animal Models." Stem Cells International 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/387513.
Texte intégralMothe, A. J., and C. H. Tator. "Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat." Neuroscience 131, no. 1 (2005): 177–87. http://dx.doi.org/10.1016/j.neuroscience.2004.10.011.
Texte intégralHachem, LD, J. Hong, A. Velumian, AJ Mothe, CH Tator, and MG Fehlings. "GR.6 Harnessing the endogenous regenerative potential of the injured spinal cord." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 50, s2 (2023): S47. http://dx.doi.org/10.1017/cjn.2023.75.
Texte intégralHoriguchi, Kotaro, Saishu Yoshida, Rumi Hasegawa, et al. "Isolation and characterization of cluster of differentiation 9-positive ependymal cells as potential adult neural stem/progenitor cells in the third ventricle of adult rats." Cell and Tissue Research 379, no. 3 (2019): 497–509. http://dx.doi.org/10.1007/s00441-019-03132-5.
Texte intégralGómez-Villafuertes, Rosa, Francisco Javier Rodríguez-Jiménez, Ana Alastrue-Agudo, Miodrag Stojkovic, María Teresa Miras-Portugal, and Victoria Moreno-Manzano. "Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury." Cell Transplantation 24, no. 8 (2015): 1493–509. http://dx.doi.org/10.3727/096368914x682828.
Texte intégralHachem, LD, H. Moradi, G. Balbinot, et al. "F.5 A neurotransmitter-dependent mechanism of ependymal cell activation: Insights into a novel therapeutic target for spinal cord injury." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 51, s1 (2024): S13. http://dx.doi.org/10.1017/cjn.2024.107.
Texte intégralHachem, Laureen D., James Hong, Alexander Velumian, Andrea Mothe, Charles Tator, and Michael G. Fehlings. "250 Harnessing the Endogenous Stem Cell Response After Spinal Cord Injury: A Novel and Translationally Relevant Therapeutic Strategy." Neurosurgery 70, Supplement_1 (2024): 69. http://dx.doi.org/10.1227/neu.0000000000002809_250.
Texte intégralJeong, Daeun, Sara G. Danielli, Kendra Maaß, et al. "STEM-11. MULTIDIMENSIONAL PROFILING OF TUMOR CELL HETEROGENEITY REVEALS CELL-LINEAGE SPECIFIC FUNCTIONS IN SUPRATENTORIAL EPENDYMOMAS." Neuro-Oncology 26, Supplement_8 (2024): viii60. http://dx.doi.org/10.1093/neuonc/noae165.0237.
Texte intégralWittmann, Gabor, Surbhi Gahlot, Malcolm James Low, and Ronald M. Lechan. "Rax Expression Identifies a Novel Cell Type in the Adult Mouse Hypothalamus." Journal of the Endocrine Society 5, Supplement_1 (2021): A42. http://dx.doi.org/10.1210/jendso/bvab048.082.
Texte intégralHenzi, Roberto, Montserrat Guerra, Karin Vío, et al. "Neurospheres from neural stem/neural progenitor cells (NSPCs) of non-hydrocephalic HTx rats produce neurons, astrocytes and multiciliated ependyma: the cerebrospinal fluid of normal and hydrocephalic rats supports such a differentiation." Cell and Tissue Research 373, no. 2 (2018): 421–38. http://dx.doi.org/10.1007/s00441-018-2828-8.
Texte intégralRibeiro, Ana, Joana F. Monteiro, Ana C. Certal, Ana M. Cristovão, and Leonor Saúde. "Foxj1a is expressed in ependymal precursors, controls central canal position and is activated in new ependymal cells during regeneration in zebrafish." Open Biology 7, no. 11 (2017): 170139. http://dx.doi.org/10.1098/rsob.170139.
Texte intégralMokrý, Jaroslav, and J. Karbanová. "Foetal Mouse Neural Stem Cells Give Rise to Ependymal Cells in Vitro." Folia Biologica 52, no. 5 (2006): 149–55. https://doi.org/10.14712/fb2006052050149.
Texte intégralItokazu, Yutaka, Masaaki Kitada, Mari Dezawa, et al. "Choroid plexus ependymal cells host neural progenitor cells in the rat." Glia 53, no. 1 (2005): 32–42. http://dx.doi.org/10.1002/glia.20255.
Texte intégralRao, Shilpa, Niveditha Ravindra, Nishanth Sadashiva, Bhagavatula Indira Devi, and Vani Santosh. "Anaplastic Ependymoma With Ganglionic Differentiation: Report of a Rare Case and Implications in Diagnosis." International Journal of Surgical Pathology 25, no. 7 (2017): 644–47. http://dx.doi.org/10.1177/1066896917710716.
Texte intégralYÜKSEL, Hasan, and Emre ZAFER. "Endometrial Stem/Progenitor Cells." Current Obstetrics and Gynecology Reports 9, no. 1 (2020): 7–14. http://dx.doi.org/10.1007/s13669-020-00278-w.
Texte intégralMaruyama, Tetsuo. "Endometrial stem/progenitor cells." Journal of Obstetrics and Gynaecology Research 40, no. 9 (2014): 2015–22. http://dx.doi.org/10.1111/jog.12501.
Texte intégralYoder, Mervin C. "Endothelial stem and progenitor cells (stem cells): (2017 Grover Conference Series)." Pulmonary Circulation 8, no. 1 (2017): 204589321774395. http://dx.doi.org/10.1177/2045893217743950.
Texte intégralMoreno-Manzano, Victoria, Francisco Javier Rodríguez-Jiménez, Mireia García-Roselló, et al. "Activated Spinal Cord Ependymal Stem Cells Rescue Neurological Function." Stem Cells 27, no. 3 (2009): 733–43. http://dx.doi.org/10.1002/stem.24.
Texte intégralPinto do Ó, Perpétua, Karin Richter, and Leif Carlsson. "Hematopoietic progenitor/stem cells immortalized byLhx2 generate functional hematopoietic cells in vivo." Blood 99, no. 11 (2002): 3939–46. http://dx.doi.org/10.1182/blood.v99.11.3939.
Texte intégralWang, Xusehng. "Stem/Progenitor Cells in Skin." Journal of Stem Cells Research, Development & Therapy 5, no. 1 (2019): 1–5. http://dx.doi.org/10.24966/srdt-2060/100016.
Texte intégralPittatore, G., A. Moggio, C. Benedetto, B. Bussolati, and A. Revelli. "Endometrial Adult/Progenitor Stem Cells." Reproductive Sciences 21, no. 3 (2013): 296–304. http://dx.doi.org/10.1177/1933719113503405.
Texte intégralArdhanareeswaran, Karthikeyan, and Maria Mirotsou. "Lung Stem and Progenitor Cells." Respiration 85, no. 2 (2013): 89–95. http://dx.doi.org/10.1159/000346500.
Texte intégralChevreau, Robert, Hussein Ghazale, Chantal Ripoll, et al. "RNA Profiling of Mouse Ependymal Cells after Spinal Cord Injury Identifies the Oncostatin Pathway as a Potential Key Regulator of Spinal Cord Stem Cell Fate." Cells 10, no. 12 (2021): 3332. http://dx.doi.org/10.3390/cells10123332.
Texte intégralZhou, Li-li, Wei Liu, Yan-min Wu, Wei-lian Sun, C. E. Dörfer, and K. M. Fawzy El-Sayed. "Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters." Stem Cells International 2020 (February 25, 2020): 1–16. http://dx.doi.org/10.1155/2020/1327405.
Texte intégralFu, Hui, Yingchuan Qi, Min Tan, et al. "Molecular mapping of the origin of postnatal spinal cord ependymal cells: Evidence that adult ependymal cells are derived from Nkx6.1+ ventral neural progenitor cells." Journal of Comparative Neurology 456, no. 3 (2003): 237–44. http://dx.doi.org/10.1002/cne.10481.
Texte intégralFarrugia, Georgiana, and Rena Balzan. "Stem Cell Repair for Cardiac Muscle Regeneration: A Review of the Literature." International Journal of Medical Students 4, no. 1 (2016): 19–25. http://dx.doi.org/10.5195/ijms.2016.145.
Texte intégralAlshoubaki, Yasmin K., Bhavana Nayer, Surojeet Das, and Mikaël M. Martino. "Modulation of the Activity of Stem and Progenitor Cells by Immune Cells." Stem Cells Translational Medicine 11, no. 3 (2022): 248–58. http://dx.doi.org/10.1093/stcltm/szab022.
Texte intégralYang, Dong-Rong, Xian-Fan Ding, Jie Luo, et al. "Increased Chemosensitivity via Targeting Testicular Nuclear Receptor 4 (TR4)-Oct4-Interleukin 1 Receptor Antagonist (IL1Ra) Axis in Prostate Cancer CD133+ Stem/Progenitor Cells to Battle Prostate Cancer." Journal of Biological Chemistry 288, no. 23 (2013): 16476–83. http://dx.doi.org/10.1074/jbc.m112.448142.
Texte intégralZhao, Xiangshan, Gautam K. Malhotra, Hamid Band, and Vimla Band. "Derivation of Myoepithelial Progenitor Cells from Bipotent Mammary Stem/Progenitor Cells." PLoS ONE 7, no. 4 (2012): e35338. http://dx.doi.org/10.1371/journal.pone.0035338.
Texte intégralCopland, Mhairi, Francesca Pellicano, Linda Richmond, et al. "BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors." Blood 111, no. 5 (2008): 2843–53. http://dx.doi.org/10.1182/blood-2007-09-112573.
Texte intégralSugimura, Ryohichi, Deepak Kumar Jha, Areum Han, et al. "Haematopoietic stem and progenitor cells from human pluripotent stem cells." Nature 545, no. 7655 (2017): 432–38. http://dx.doi.org/10.1038/nature22370.
Texte intégral