Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Exact recovery.

Articles de revues sur le sujet « Exact recovery »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Exact recovery ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Andrecut, M. "Exact Fourier spectrum recovery." Physics Letters A 377, no. 1-2 (2012): 1–6. http://dx.doi.org/10.1016/j.physleta.2012.10.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tsuda, Seiya, Yuji Iwahori, M. K. Bhuyan, Robert J. Woodham, and Kunio Kasugai. "Recovering 3D Shape with Absolute Size from Endoscope Images Using RBF Neural Network." International Journal of Biomedical Imaging 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/109804.

Texte intégral
Résumé :
Medical diagnosis judges the status of polyp from the size and the 3D shape of the polyp from its medical endoscope image. However the medical doctor judges the status empirically from the endoscope image and more accurate 3D shape recovery from its 2D image has been demanded to support this judgment. As a method to recover 3D shape with high speed, VBW (Vogel-Breuß-Weickert) model is proposed to recover 3D shape under the condition of point light source illumination and perspective projection. However, VBW model recovers the relative shape but there is a problem that the shape cannot be recov
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cheded, L. "Exact recovery of higher order moments." IEEE Transactions on Information Theory 44, no. 2 (1998): 851–58. http://dx.doi.org/10.1109/18.661534.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Berthet, Quentin, Philippe Rigollet, and Piyush Srivastava. "Exact recovery in the Ising blockmodel." Annals of Statistics 47, no. 4 (2019): 1805–34. http://dx.doi.org/10.1214/17-aos1620.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

You, Qing Shan, and Qun Wan. "Principal Component Pursuit with Weighted Nuclear Norm." Applied Mechanics and Materials 513-517 (February 2014): 1722–26. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.1722.

Texte intégral
Résumé :
Principal Component Pursuit (PCP) recovers low-dimensional structures from a small set of linear measurements, such as low rank matrix and sparse matrix. Pervious works mainly focus on exact recovery without additional noise. However, in many applications the observed measurements are corrupted by an additional white Gaussian noise (AWGN). In this paper, we model the recovered matrix the sum a low-rank matrix, a sparse matrix and an AWGN. We propose a weighted PCP for the recovery matrix, which is solved by alternating direction method. Numerical results show that the reconstructions performan
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dym, Nadav, and Yaron Lipman. "Exact Recovery with Symmetries for Procrustes Matching." SIAM Journal on Optimization 27, no. 3 (2017): 1513–30. http://dx.doi.org/10.1137/16m1078628.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Abbe, Emmanuel, Afonso S. Bandeira, and Georgina Hall. "Exact Recovery in the Stochastic Block Model." IEEE Transactions on Information Theory 62, no. 1 (2016): 471–87. http://dx.doi.org/10.1109/tit.2015.2490670.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Duval, Vincent, and Gabriel Peyré. "Exact Support Recovery for Sparse Spikes Deconvolution." Foundations of Computational Mathematics 15, no. 5 (2014): 1315–55. http://dx.doi.org/10.1007/s10208-014-9228-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chen, Xiaohui, and Yun Yang. "Cutoff for Exact Recovery of Gaussian Mixture Models." IEEE Transactions on Information Theory 67, no. 6 (2021): 4223–38. http://dx.doi.org/10.1109/tit.2021.3063155.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hajek, Bruce, Yihong Wu, and Jiaming Xu. "Achieving Exact Cluster Recovery Threshold via Semidefinite Programming." IEEE Transactions on Information Theory 62, no. 5 (2016): 2788–97. http://dx.doi.org/10.1109/tit.2016.2546280.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Ye, Chang, and Gonzalo Mateos. "Blind deconvolution on graphs: Exact and stable recovery." Signal Processing 230 (May 2025): 109864. https://doi.org/10.1016/j.sigpro.2024.109864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Yang, Zai, and Lihua Xie. "Exact Joint Sparse Frequency Recovery via Optimization Methods." IEEE Transactions on Signal Processing 64, no. 19 (2016): 5145–57. http://dx.doi.org/10.1109/tsp.2016.2576422.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Lerman, Gilad, Yunpeng Shi, and Teng Zhang. "Exact Camera Location Recovery by Least Unsquared Deviations." SIAM Journal on Imaging Sciences 11, no. 4 (2018): 2692–721. http://dx.doi.org/10.1137/17m115061x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Hand, Paul, Choongbum Lee, and Vladislav Voroninski. "ShapeFit: Exact Location Recovery from Corrupted Pairwise Directions." Communications on Pure and Applied Mathematics 71, no. 1 (2017): 3–50. http://dx.doi.org/10.1002/cpa.21727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

KONG, LINGCHEN, and NAIHUA XIU. "EXACT LOW-RANK MATRIX RECOVERY VIA NONCONVEX SCHATTEN p-MINIMIZATION." Asia-Pacific Journal of Operational Research 30, no. 03 (2013): 1340010. http://dx.doi.org/10.1142/s0217595913400101.

Texte intégral
Résumé :
The low-rank matrix recovery (LMR) arises in many fields such as signal and image processing, quantum state tomography, magnetic resonance imaging, system identification and control, and it is generally NP-hard. Recently, Majumdar and Ward [Majumdar, A and RK Ward (2011). An algorithm for sparse MRI reconstruction by Schatten p-norm minimization. Magnetic Resonance Imaging, 29, 408–417]. had successfully applied nonconvex Schatten p-minimization relaxation of LMR in magnetic resonance imaging. In this paper, our main aim is to establish RIP theoretical result for exact LMR via nonconvex Schatt
Styles APA, Harvard, Vancouver, ISO, etc.
16

Eswaraiah, R., and E. Sreenivasa Reddy. "Medical Image Watermarking Technique for Accurate Tamper Detection in ROI and Exact Recovery of ROI." International Journal of Telemedicine and Applications 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/984646.

Texte intégral
Résumé :
In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (
Styles APA, Harvard, Vancouver, ISO, etc.
17

Li, Chao, Mohammad Emtiyaz Khan, Zhun Sun, et al. "Beyond Unfolding: Exact Recovery of Latent Convex Tensor Decomposition Under Reshuffling." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 4602–9. http://dx.doi.org/10.1609/aaai.v34i04.5890.

Texte intégral
Résumé :
Exact recovery of tensor decomposition (TD) methods is a desirable property in both unsupervised learning and scientific data analysis. The numerical defects of TD methods, however, limit their practical applications on real-world data. As an alternative, convex tensor decomposition (CTD) was proposed to alleviate these problems, but its exact-recovery property is not properly addressed so far. To this end, we focus on latent convex tensor decomposition (LCTD), a practically widely-used CTD model, and rigorously prove a sufficient condition for its exact-recovery property. Furthermore, we show
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zhao, Feng, Min Ye, and Shao-Lun Huang. "Exact Recovery of Stochastic Block Model by Ising Model." Entropy 23, no. 1 (2021): 65. http://dx.doi.org/10.3390/e23010065.

Texte intégral
Résumé :
In this paper, we study the phase transition property of an Ising model defined on a special random graph—the stochastic block model (SBM). Based on the Ising model, we propose a stochastic estimator to achieve the exact recovery for the SBM. The stochastic algorithm can be transformed into an optimization problem, which includes the special case of maximum likelihood and maximum modularity. Additionally, we give an unbiased convergent estimator for the model parameters of the SBM, which can be computed in constant time. Finally, we use metropolis sampling to realize the stochastic estimator a
Styles APA, Harvard, Vancouver, ISO, etc.
19

Gao, Zheng, and Stilian Stoev. "Fundamental limits of exact support recovery in high dimensions." Bernoulli 26, no. 4 (2020): 2605–38. http://dx.doi.org/10.3150/20-bej1197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Tran, Giang, and Rachel Ward. "Exact Recovery of Chaotic Systems from Highly Corrupted Data." Multiscale Modeling & Simulation 15, no. 3 (2017): 1108–29. http://dx.doi.org/10.1137/16m1086637.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Hajek, Bruce, Yihong Wu, and Jiaming Xu. "Achieving Exact Cluster Recovery Threshold via Semidefinite Programming: Extensions." IEEE Transactions on Information Theory 62, no. 10 (2016): 5918–37. http://dx.doi.org/10.1109/tit.2016.2594812.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Yin, Zi-qiang. "Exact wavefront recovery with tilt from lateral shear interferograms." Applied Optics 48, no. 14 (2009): 2760. http://dx.doi.org/10.1364/ao.48.002760.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Rahnama Rad, Kamiar. "Nearly Sharp Sufficient Conditions on Exact Sparsity Pattern Recovery." IEEE Transactions on Information Theory 57, no. 7 (2011): 4672–79. http://dx.doi.org/10.1109/tit.2011.2145670.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Wang, L., and A. Singer. "Exact and stable recovery of rotations for robust synchronization." Information and Inference 2, no. 2 (2013): 145–93. http://dx.doi.org/10.1093/imaiai/iat005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Samani, Nozar, and M. Pasandi. "Retracted:A Single Recovery Type Curve from Theis' Exact Solution." Ground Water 41, no. 5 (2003): 602–7. http://dx.doi.org/10.1111/j.1745-6584.2003.tb02398.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Dym, Nadav. "Exact Recovery with Symmetries for the Doubly Stochastic Relaxation." SIAM Journal on Applied Algebra and Geometry 2, no. 3 (2018): 462–88. http://dx.doi.org/10.1137/17m1132264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Konyagin, S. V., Yu V. Malykhin, and K. S. Ryutin. "On exact recovery of sparse vectors from linear measurements." Mathematical Notes 94, no. 1-2 (2013): 107–14. http://dx.doi.org/10.1134/s0001434613070109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Boikov, Ilia V., and Nikolay P. Krivulin. "Non-stationary dynamic system characteristics recovery from three test signals." Izmeritel`naya Tekhnika, no. 3 (2020): 9–15. http://dx.doi.org/10.32446/0368-1025it.2020-3-9-15.

Texte intégral
Résumé :
Algorithms of exact restoration in an analytical form of dynamic characteristics of non-stationary dynamic systems are constructed. Non-stationary continuous dynamical systems modeled by Volterra integral equations of the first kind and non-stationary discrete dynamical systems modeled by discrete analogues of Volterra integral equations of the first kind are considered.The article consists of an introduction and three sections: 1) The exact restoration of the dynamic characteristics of continuous systems, 2) The restoration of the transition characteristics of discrete systems, 3) Conclusions
Styles APA, Harvard, Vancouver, ISO, etc.
29

Han, Zhi, Jianjun Wang, Jia Jing, and Hai Zhang. "A Simple Gaussian Measurement Bound for Exact Recovery of Block-Sparse Signals." Discrete Dynamics in Nature and Society 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/104709.

Texte intégral
Résumé :
We present a probabilistic analysis on conditions of the exact recovery of block-sparse signals whose nonzero elements appear in fixed blocks. We mainly derive a simple lower bound on the necessary number of Gaussian measurements for exact recovery of such block-sparse signals via the mixedl2/lq (0<q≤1)norm minimization method. In addition, we present numerical examples to partially support the correctness of the theoretical results. The obtained results extend those known for the standardlqminimization and the mixedl2/l1minimization methods to the mixedl2/lq (0<q≤1)minimization method i
Styles APA, Harvard, Vancouver, ISO, etc.
30

Nishimura, Koichi, Saya Nakamura, Masaaki Kusunose, et al. "Comparison of patient-reported outcomes during acute exacerbations of chronic obstructive pulmonary disease." BMJ Open Respiratory Research 5, no. 1 (2018): e000305. http://dx.doi.org/10.1136/bmjresp-2018-000305.

Texte intégral
Résumé :
IntroductionThe aim of this study was to investigate which patient-reported outcome measure was the best during the recovery phase from severe exacerbation of chronic obstructive pulmonary disease (COPD).MethodsThe Exacerbations of Chronic Pulmonary Disease Tool (EXACT), the COPD Assessment Test (CAT), the St George’s Respiratory Questionnaire (SGRQ), the Dyspnoea-12 (D-12) and the Hyland Scale (global scale) were recorded every week for the first month and at 2 and 3 months in 33 hospitalised subjects with acute exacerbation of COPD (AECOPD).ResultsOn the day of admission (day 1), the interna
Styles APA, Harvard, Vancouver, ISO, etc.
31

sci, Anping Liao. "The Exact Recovery of Sparse Signals Via Orthogonal Matching Pursuit." Journal of Computational Mathematics 34, no. 1 (2016): 70–86. http://dx.doi.org/10.4208/jcm.1510-m2015-0284.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Ye, Min. "Exact Recovery and Sharp Thresholds of Stochastic Ising Block Model." IEEE Transactions on Information Theory 67, no. 12 (2021): 8207–35. http://dx.doi.org/10.1109/tit.2021.3117264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ye, Min. "Exact Recovery and Sharp Thresholds of Stochastic Ising Block Model." IEEE Transactions on Information Theory 67, no. 12 (2021): 8207–35. http://dx.doi.org/10.1109/tit.2021.3117264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Herzet, Cedric, Charles Soussen, Jerome Idier, and Remi Gribonval. "Exact Recovery Conditions for Sparse Representations With Partial Support Information." IEEE Transactions on Information Theory 59, no. 11 (2013): 7509–24. http://dx.doi.org/10.1109/tit.2013.2278179.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Dan, Wei, and Yu Fu. "Exact support recovery via orthogonal matching pursuit from noisy measurements." Electronics Letters 52, no. 17 (2016): 1497–99. http://dx.doi.org/10.1049/el.2016.1893.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Determe, Jean-Francois, Jerome Louveaux, Laurent Jacques, and Francois Horlin. "On The Exact Recovery Condition of Simultaneous Orthogonal Matching Pursuit." IEEE Signal Processing Letters 23, no. 1 (2016): 164–68. http://dx.doi.org/10.1109/lsp.2015.2506989.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Zhai, Dede, Shanyong Chen, Shuai Xue, and Ziqiang Yin. "Exact recovery of wavefront from multishearing interferograms in spatial domain." Applied Optics 55, no. 28 (2016): 8063. http://dx.doi.org/10.1364/ao.55.008063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Yang, Jung-Min. "Exact fault recovery for asynchronous sequential machines with output bursts." Automatica 97 (November 2018): 115–20. http://dx.doi.org/10.1016/j.automatica.2018.08.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Qu, Qing, Xiao Li, and Zhihui Zhu. "Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient Descent." SIAM Journal on Imaging Sciences 13, no. 3 (2020): 1630–52. http://dx.doi.org/10.1137/19m1291327.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Saad, Hussein, and Aria Nosratinia. "Exact Recovery in Community Detection With Continuous-Valued Side Information." IEEE Signal Processing Letters 26, no. 2 (2019): 332–36. http://dx.doi.org/10.1109/lsp.2018.2889920.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Trede, Dennis. "Exact support recovery for linear inverse problems with sparsity constraints." Methods and Applications of Analysis 18, no. 1 (2011): 105–10. http://dx.doi.org/10.4310/maa.2011.v18.n1.a7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ovall, Jeffrey S. "Asymptotically exact functional error estimators based on superconvergent gradient recovery." Numerische Mathematik 102, no. 3 (2005): 543–58. http://dx.doi.org/10.1007/s00211-005-0655-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Guo, Ping, Changhua Wei, Wenjun Xiong, and Chunlan Zhao. "Exact Boundary Controller Design for a Kind of Enhanced Oil Recovery Models." Abstract and Applied Analysis 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/747092.

Texte intégral
Résumé :
The exact boundary controllability of a class of enhanced oil recovery systems is discussed in this paper. With a simple transformation, the enhanced oil recovery model is first affirmed to be neither genuinely nonlinear nor linearly degenerate. It is then shown that the enhanced oil recovery system with nonlinear boundary conditions is exactly boundary controllable by applying a constructed method. Moreover, an interval of the control time is presented to not only give the optimal control time but also show the time for avoiding the blowup of the controllable solution. Finally, an example is
Styles APA, Harvard, Vancouver, ISO, etc.
44

Osipenko, Konstantin Yur'evich. "Recovery of analytic functions that is exact on subspaces of entire functions." Sbornik: Mathematics 215, no. 3 (2024): 383–400. http://dx.doi.org/10.4213/sm9976e.

Texte intégral
Résumé :
A family of optimal recovery methods is developed for the recovery of analytic functions in a strip and their derivatives from inaccurately specified trace of the Fourier transforms of these functions on the real axis. In addition, the methods must be exact on some subspaces of entire functions. Bibliography: 12 titles.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Wang, Runsong, Xuelian Li, Juntao Gao, Hui Li, and Baocang Wang. "Quantum rotational cryptanalysis for preimage recovery of round-reduced Keccak." Quantum Information & Computation 23, no. 3&4 (2023): 223–34. http://dx.doi.org/10.26421/qic23.3-4-3.

Texte intégral
Résumé :
The Exclusive-OR Sum-of-Product (ESOP) minimization problem has long been of interest to the research community because of its importance in classical logic design (including low-power design and design for test), reversible logic synthesis, and knowledge discovery, among other applications. However, no exact minimal minimization method has been presented for more than seven variables on arbitrary functions. This paper presents a novel quantum-classical hybrid algorithm for the exact minimal ESOP minimization of incompletely specified Boolean functions. This algorithm constructs oracles from s
Styles APA, Harvard, Vancouver, ISO, etc.
46

Utessov, A. B. "Optimal recovery of functions from anisotropic Sobolev classes on a power – logarithmic scale." Bulletin of L.N. Gumilyov Eurasian National University. Mathematics. Computer Science. Mechanics Series 136, no. 3 (2022): 37–41. http://dx.doi.org/10.32523/bulmathenu.2021/3.4.

Texte intégral
Résumé :
In this paper, within the framework of the C (N) D - formulation of the recovery problem, the problem of optimal recovery of functions from anisotropic Sobolev classes in a power-logarithmic scale in the metric $L^{q} \, (2\le q\le \infty )$ is solved. Namely, in the case when the values $l_{N}^{\eqref{GrindEQ__1_}} (f),...,l_{N}^{(N)} (f)$ of linear functionals $l_{N}^{\eqref{GrindEQ__1_}} ,...,l_{N}^{(N)} $ defined on the considered functional class are used as numerical information about a function, firstly, the exact order of the recovery error is established, and secondly, a specific comp
Styles APA, Harvard, Vancouver, ISO, etc.
47

Zhao, Xiaofeng, Wei Zhao, and Mingao Yuan. "Information Limits for Community Detection in Hypergraph with Label Information." Symmetry 13, no. 11 (2021): 2060. http://dx.doi.org/10.3390/sym13112060.

Texte intégral
Résumé :
In network data mining, community detection refers to the problem of partitioning the nodes of a network into clusters (communities). This is equivalent to identifying the cluster label of each node. A label estimator is said to be an exact recovery of the true labels (communities) if it coincides with the true labels with a probability convergent to one. In this work, we consider the effect of label information on the exact recovery of communities in an m-uniform Hypergraph Stochastic Block Model (HSBM). We investigate two scenarios of label information: (1) a noisy label for each node is obs
Styles APA, Harvard, Vancouver, ISO, etc.
48

Fuchs, J. J. "Recovery of Exact Sparse Representations in the Presence of Bounded Noise." IEEE Transactions on Information Theory 51, no. 10 (2005): 3601–8. http://dx.doi.org/10.1109/tit.2005.855614.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Cole, Sam, and Yizhe Zhu. "Exact recovery in the hypergraph stochastic block model: A spectral algorithm." Linear Algebra and its Applications 593 (May 2020): 45–73. http://dx.doi.org/10.1016/j.laa.2020.01.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Jaulmes, Luc, Miquel Moreto, Eduard Ayguade, Jesus Labarta, Mateo Valero, and Marc Casas. "Asynchronous and Exact Forward Recovery for Detected Errors in Iterative Solvers." IEEE Transactions on Parallel and Distributed Systems 29, no. 9 (2018): 1961–74. http://dx.doi.org/10.1109/tpds.2018.2817524.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!