Littérature scientifique sur le sujet « Exciton dynamic »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Exciton dynamic ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Exciton dynamic"
Tao, Weijian, Qiaohui Zhou et Haiming Zhu. « Dynamic polaronic screening for anomalous exciton spin relaxation in two-dimensional lead halide perovskites ». Science Advances 6, no 47 (novembre 2020) : eabb7132. http://dx.doi.org/10.1126/sciadv.abb7132.
Texte intégralSneyd, Alexander J., Tomoya Fukui, David Paleček, Suryoday Prodhan, Isabella Wagner, Yifan Zhang, Jooyoung Sung et al. « Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization ». Science Advances 7, no 32 (août 2021) : eabh4232. http://dx.doi.org/10.1126/sciadv.abh4232.
Texte intégralChaouachi, Nizar, et Sihem Jaziri. « Possibility of observation quantum beat coherent exciton states with time-resolved photoemission ». Journal of Applied Physics 131, no 15 (21 avril 2022) : 155704. http://dx.doi.org/10.1063/5.0086440.
Texte intégralAslan, Burak, Colin Yule, Yifei Yu, Yan Joe Lee, Tony F. Heinz, Linyou Cao et Mark L. Brongersma. « Excitons in strained and suspended monolayer WSe2 ». 2D Materials 9, no 1 (21 octobre 2021) : 015002. http://dx.doi.org/10.1088/2053-1583/ac2d15.
Texte intégralUratani, Hiroki. « (Invited) Simulating Dynamic Excitons Via Quantum Molecular Dynamics : A Case Study in Lead Halide Perovskites ». ECS Meeting Abstracts MA2022-01, no 13 (7 juillet 2022) : 904. http://dx.doi.org/10.1149/ma2022-0113904mtgabs.
Texte intégralZhu, Tong, Jordan M. Snaider, Long Yuan et Libai Huang. « Ultrafast Dynamic Microscopy of Carrier and Exciton Transport ». Annual Review of Physical Chemistry 70, no 1 (14 juin 2019) : 219–44. http://dx.doi.org/10.1146/annurev-physchem-042018-052605.
Texte intégralOuyang, Hao, Haitao Chen, Yuxiang Tang, Jun Zhang, Chenxi Zhang, Bin Zhang, Xiang’ai Cheng et Tian Jiang. « All-optical dynamic tuning of local excitonic emission of monolayer MoS2 by integration with Ge2Sb2Te5 ». Nanophotonics 9, no 8 (18 avril 2020) : 2351–59. http://dx.doi.org/10.1515/nanoph-2019-0366.
Texte intégralChen, Lijia, Lun Cai, Lianbin Niu, Pan Guo et Qunliang Song. « Influence of Temperature on Exciton Dynamic Processes in CuPc/C60 Based Solar Cells ». Micromachines 12, no 11 (22 octobre 2021) : 1295. http://dx.doi.org/10.3390/mi12111295.
Texte intégralAKAI, I., T. KARASAWA et T. KOMATSU. « OPTICAL STARK EFFECTS ON THE STACKING FAULT EXCITONS IN BiI3 ». Journal of Nonlinear Optical Physics & ; Materials 01, no 02 (avril 1992) : 311–37. http://dx.doi.org/10.1142/s0218199192000169.
Texte intégralTikhomirov, S. A. « Ultrafast dynamics and mechanisms of non-stationary absorption in thin gallium selenide samples ». Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 57, no 1 (2 avril 2021) : 99–107. http://dx.doi.org/10.29235/1561-2430-2021-57-1-99-107.
Texte intégralThèses sur le sujet "Exciton dynamic"
Heiber, Michael C. « Dynamic Monte Carlo Modeling of Exciton Dissociation and Geminate Recombination in Organic Solar Cells ». University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1353092083.
Texte intégralTamai, Yasunari. « Excited State Dynamics in Nanostructured Polymer Systems ». 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174961.
Texte intégralVisnevski, Dmitri. « Collective dynamics of excitons and exciton-polaritons in nanoscale heterostructures ». Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00914332.
Texte intégralAbbas, Chahine. « Optical spectroscopy of indirect excitons and electron spins in semiconductor nanostructures ». Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS049.
Texte intégralThis work provides an optical study of spin dynamics in two different systems: electrons gas in n-doped CdTe thin layers, and indirect excitons in asymmetric GaAs coupled quantum wells. Time and polar resolved photoluminescence and pump-probe spectroscopy allowed the determination of both the lifetime and the relaxation time of indirect excitons.The global behaviour of the dedicated biased sample has been described, major technical constraints have been pointed out and optimal working conditions have been identified. In photoluminescence, we obtained a lifetime of 15 ns and a spin relaxation time of 5 ns. Pump-probe spectroscopy with an exceptional delay range shown that longer characteristic times could be obtained increasing the delay between two laser pulses.An other optical method has been used to study electrons in CdTe thin layers. Spin noise spectroscopy has recently emerged as an ideal tool to study dynamics of spin systems through their spontaneous fluctuations which are encoded in the polarisation state of a laser beam by means of Faraday rotation. Common spin noise setups provide only temporal fluctuations, spatial information being lost averaging the signal on the laser spot. Here, we demonstrate the first implementation of a spin noise setup providing both spatial and temporal spin correlations thanks to a wave vector selectivity of the scattered light. This gave us the opportunity to measure both the spin relaxation time and the spin diffusion coefficient. This complete vision of the spin dynamics in CdTe has been compared to our understanding of spin physics in GaAs. Against all odds, this knowledge seems not to be directly transposable from GaAs to CdTe
Sajjad, Muhammad Tariq. « Exciton dynamics in carbon nanotubes ». Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576127.
Texte intégralBouet, Louis. « Valley dynamics and excitonic properties in monolayer transition metal dichalcogenides ». Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0033/document.
Texte intégralThe possibility of isolating transition metal dichalcogenide monolayers by simple experimental means has been demonstrated in 2005, by the same technique used for graphene. This has sparked extremely diverse and active research by material scientists, physicists and chemists on these perfectly two-dimensional (2D) materials. Their physical properties inmonolayer formare appealing both fromthe point of view of fundamental science and for potential applications. Transition metal dichalcogenidemonolayers such asMoS2 have a direct optical bandgap in the visible and show strong absorption of the order of 10% per monolayer. For transistors based on single atomic layers, the presence of a gap allows to obtain high on/off ratios.In addition to potential applications in electronics and opto-electronics these 2D materials allow manipulating a new degree of freedom of electrons, in addition to the spin and the charge : Inversion symmetry breaking in addition to the strong spin-orbit coupling result in very original optical selection rules. The direct bandgap is situated at two non-equivalent valleys in k-space, K+ and K−. Using a specific laser polarization, carriers can be initialized either in the K+ or K− valley, allowing manipulating the valley index of the electronic states. This opens up an emerging research field termed "valleytronics". The present manuscript contains a set of experiments allowing understanding and characterizing the optoelectronic properties of these new materials. The first chapter is dedicated to the presentation of the scientific context. The original optical and electronic properties of monolayer transition metal dichalcogenides are demonstrated using a simple theoreticalmodel. The second chapter presents details of the samples and the experimental setup. Chapters 3 to 6 present details of the experiments carried out and the results obtained. We verify experimentally the optical selection rules. We identify the different emission peaks in the monolayer materials MoS2, WSe2 and MoSe2. In time resolved photoluminescence measurements we study the dynamics of photo-generated carriersand their polarization. An important part of this study is dedicated to experimental investigations of the properties of excitons, Coulomb bound electron-hole pairs. In the final experimental chapter, magneto-Photoluminescence allows us to probe the electronic band structure and to lift the valley degeneracy
Brüggemann, Ben. « Theory of ultrafast exciton dynamics in photosynthetic antenna systems ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2004. http://dx.doi.org/10.18452/15037.
Texte intégralThe multi-exciton description of excitation energy transfer in chromophore complexes and biological light harvesting antenna systems is extended to include the exciton-exciton annihilation processes. To achieve a complete microscopic description the approach is based on intra--chromophore internal conversion processes which leads to non-radiative transitions from higher to lower lying exciton manifolds. Besides an inclusion of exciton-exciton annihilation the used multi-exciton density matrix theory also accounts for a coupling to low-frequency vibrational modes and the radiation field. Concentrating on transitions from the two- to the single-exciton manifold exact and approximate expressions for the annihilation rate are derived. A first application of the introduced extended multi-exciton density matrix theory is given by the computation of ultrafast transient absorption spectra. To elucidate the process of exciton-exciton annihilation in intensity dependent transient absorption data the approach is applied to the B850 ring of the LH2 found in rhodobacter sphaeroides. The signatures of exciton-exciton annihilation as well as the influence of static disorder are discussed in detail. The simulations of transient absorption including static disorder and orientational averaging are in good agreement with experimental data. The recently published structure of the Photosystem I (PS1) of Synechococcus elongatus made it for the first time possible to introduce an excitonic model for the 96 chlorophylls embedded in the protein matrix of that core-antenna system, as presented in this work. The challenge has been to reproduce linear frequency domain spectra in a wide temperature range as well as the time resolved fluorescence. The couplings and the dipole-moments of the chlorophylls are extracted from the x-ray crystal structure. Since the position of the energetic levels of the chlorophylls depend on the respective surrounding their determination is achieved by fitting low temperature absorption, linear dichroism and circular dichroism at the same time. After assigning some chromophores to the red-most states, an evolutionary algorithm is used to get the best fit. The quality of the resulting PS1 model (additionally accounting for inhomogeneous line broadening) is confirmed in calculating time dependent fluorescence spectra which show a good agreement with recent experimental results. The outlined method is also applicable to other photosynthetic antenna systems. The above described exciton models successfully explain the respective measurements. In a second step, they will be used to propose a new type of experiment, the exciton control experiment. Based on an exciton model for the FMO complex of Prosthecochloris aestuarii and the proposed PS1 model of Synechococcus elongatus one studies the laser pulse formation of excitonic wavepackets, i.e. a coherent superposition of excitonic states similar to vibrational wavepackets. Optimal Control theory is used to calculate the shape of femtosecond laser pulses that leads to a spatial localization of excitation energy. The possibility to populate such a localized target state is demonstrated, even in the presence of disorder or exciton-exciton annihilation, and it is shown that the efficiency of localization as well as the length the most suited pulses strongly depend on temperature.
Nelson, Delene J. « Exciton operators, communication relations and dynamics ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ33420.pdf.
Texte intégralLagoudakis, Pavlos G. « Exciton polariton dynamics in semiconductor microcavities ». Thesis, University of Southampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274583.
Texte intégralGrevatt, Treena. « Exciton spin dynamics in quantum wells ». Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242274.
Texte intégralLivres sur le sujet "Exciton dynamic"
Bergin, Randy M., et Randy M. Bergin. Exciton quasiparticles : Theory, dynamics, and applications. Hauppauge, N.Y : Nova Science Publishers, 2010.
Trouver le texte intégralMonahan, Nicholas R. Ultrafast Exciton Dynamics at Molecular Surfaces. [New York, N.Y.?] : [publisher not identified], 2015.
Trouver le texte intégralBergin, Randy M. Exciton quasiparticles : Theory, dynamics, and applications. Hauppauge, N.Y : Nova Science Publishers, 2010.
Trouver le texte intégralBohn, Bernhard Johann. Exciton Dynamics in Lead Halide Perovskite Nanocrystals. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70940-2.
Texte intégralSchröter, Marco. Dissipative Exciton Dynamics in Light-Harvesting Complexes. Wiesbaden : Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09282-5.
Texte intégralBaldassare, Di Bartolo, North Atlantic Treaty Organization. Scientific Affairs Division. et NATO Advanced Research Study Institute and International School of Atomic and Molecular Spectroscopy Workshop on Spectroscopy and Dynamics of Collective Excitation in Solids (1995 : Erice, Italy), dir. Spectroscopy and dynamics of collective excitations in solids. New York : Plenum Press, 1997.
Trouver le texte intégralK, Kuchitsu, dir. Dynamics of excited molecules. Amsterdam : Elsevier, 1994.
Trouver le texte intégralH, Sockel, dir. Wind-excited vibrations of structures. New York : Springer-Verlag, 1994.
Trouver le texte intégral1947-, Whitehead J. C., et Royal Society of Chemistry (Great Britain). Faraday Division., dir. Dynamics of electronically excited states in gaseous, cluster and condensed media. London : Faraday Division, Royal Society of Chemistry, 1998.
Trouver le texte intégralMezey, Paul G. Potential energy hypersurfaces. Amsterdam : Elsevier, 1987.
Trouver le texte intégralChapitres de livres sur le sujet "Exciton dynamic"
Singh, Jai. « Exciton Dynamics ». Dans Excitation Energy Transfer Processes in Condensed Matter, 151–202. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-0996-1_5.
Texte intégralShah, Jagdeep. « Exciton Dynamics ». Dans Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 225–61. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03770-6_6.
Texte intégralShah, Jagdeep. « Exciton Dynamics ». Dans Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 225–61. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03299-2_6.
Texte intégralLaussy, Fabrice P. « Quantum Dynamics of Polariton Condensates ». Dans Exciton Polaritons in Microcavities, 1–42. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24186-4_1.
Texte intégralSatarić, M., Z. Ivić et R. Žakula. « The Temperature Dependence of Exciton-Phonon Coupling in the Context of Davydov’s Model ; The Dynamic Damping of Soliton ». Dans Davydov’s Soliton Revisited, 295–308. Boston, MA : Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-9948-4_22.
Texte intégralKulakovskii, Vladimir D., Sergei S. Gavrilov, Sergei G. Tikhodeev et Nikolay A. Gippius. « Polariton Nonlinear Dynamics : Theory and Experiments ». Dans Exciton Polaritons in Microcavities, 43–65. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24186-4_2.
Texte intégralGutowski, Jürgen, Hans-Georg Breunig et Tobias Voss. « Dynamics of Excitons and Exciton Complexes in Wide-Gap Semiconductors ». Dans Optics of Semiconductors and Their Nanostructures, 133–57. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09115-9_6.
Texte intégralSchröter, Marco. « Dissipative quantum dynamics ». Dans Dissipative Exciton Dynamics in Light-Harvesting Complexes, 5–48. Wiesbaden : Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09282-5_2.
Texte intégralDing, Wenjing. « Dynamic Shimmy of Front Wheel ». Dans Self-Excited Vibration, 167–90. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-69741-1_7.
Texte intégralTakagahara, T. « Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots ». Dans Confined Electrons and Photons, 827–30. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1963-8_38.
Texte intégralActes de conférences sur le sujet "Exciton dynamic"
Hayat, Alex, Christoph Lange, Lee A. Rozema, Ardavan Darabi, Henry M. van Driel, Aephraim M. Steinberg, Bryan Nelsen, David W. Snoke, Loren N. Pfeiffer et Kenneth W. West. « Exciton-Polariton Dynamic Stark Effect ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2012. http://dx.doi.org/10.1364/fio.2012.ftu5d.3.
Texte intégralHuang, Libai. « Ultrafast Dynamic Microscopy of Exciton and Charge Transport ». Dans nanoGe Fall Meeting 2021. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nfm.2021.237.
Texte intégralYu, Yi, John J. H. Eng, Kunze Lu, Manlin Luo, Bongkwon Son, Pratul Venkatesh, Wen Wei Lee, Yong Hao Tham, Weibo Gao et Donguk Nam. « Dynamic tuning of WSe2 exciton emission via laser annealing ». Dans 2D Photonic Materials and Devices VI, sous la direction de Arka Majumdar, Carlos M. Torres et Hui Deng. SPIE, 2023. http://dx.doi.org/10.1117/12.2649766.
Texte intégralWeibel, Jason, et David Yaron. « Dynamic dielectric screening and exciton binding energies in conjugated polymers ». Dans Optical Science, Engineering and Instrumentation '97, sous la direction de Z. Valy Vardeny et Lewis J. Rothberg. SPIE, 1997. http://dx.doi.org/10.1117/12.279281.
Texte intégralGuarneri, Ludovica, Qitong Li, Jung-Hwan Song, Mark L. Brongersma et Jorik van de Groep. « Exciton-Enhanced Light Scattering in Atomically-Thin Metasurfaces ». Dans CLEO : QELS_Fundamental Science. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fm4f.3.
Texte intégralJohnson, Anthony M. « Femtosecond Exciton Dynamics of II-VI Semiconductor Multiple Quantum Wells (Invited) ». Dans Inaugural Forum for the Research Center for Optical Physics. Washington, D.C. : Optica Publishing Group, 1993. http://dx.doi.org/10.1364/rcop.1993.tpls2.
Texte intégralBurgel, M. V., D. A. Wiersma et K. Duppen. « The Femtosecond Dynamics of Aggregate Excitons in Liquids ». Dans International Conference on Ultrafast Phenomena. Washington, D.C. : Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.pd.10.
Texte intégralPagliano, Francesco, Frank van Otten, Tian Xia, Lianhe Li, Edmund Linfield et Andrea Fiore. « Ultrafast Electrical Modulation of the Exciton Energy for the Dynamic Control of Cavity Quantum Electrodynamics ». Dans CLEO : QELS_Fundamental Science. Washington, D.C. : OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qf1a.4.
Texte intégralKuhl, J., A. Honold, L. Schultheis et C. W. Tu. « Enhancement of the Radiative Lifetime of 2D Excitons in a GaAs Quantum Well by Dephasing Collisions ». Dans Quantum Wells for Optics and Opto-Electronics. Washington, D.C. : Optica Publishing Group, 1989. http://dx.doi.org/10.1364/qwoe.1989.mc3.
Texte intégralWegener, M., I. Bar-Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang et D. S. Chemla. « Femtosecond dynamics of excitonic absorption in the infrared InGaAs quantum wells ». Dans Quantum Wells for Optics and Opto-Electronics. Washington, D.C. : Optica Publishing Group, 1989. http://dx.doi.org/10.1364/qwoe.1989.mb4.
Texte intégralRapports d'organisations sur le sujet "Exciton dynamic"
Kopelman, R. (Nanometer scale exciton spectroscopy and photochemistry : Dynamic imaging of DNA structure-activity relations and radiation signatures). Office of Scientific and Technical Information (OSTI), janvier 1991. http://dx.doi.org/10.2172/6060311.
Texte intégralKopelman, R. [Nanometer scale exciton spectroscopy and photochemistry : Dynamic imaging of DNA structure-activity relations and radiation signatures]. Progress report, September 24, 1990--July 24, 1991. Office of Scientific and Technical Information (OSTI), décembre 1991. http://dx.doi.org/10.2172/10107053.
Texte intégralKopelman, R. Nanometer scale exciton/photon dynamic spectrochemical imaging for DNA structure-activity relations and radiation signatures. Final progress report, December 24, 1993--December 23, 1996. Office of Scientific and Technical Information (OSTI), juin 1997. http://dx.doi.org/10.2172/486116.
Texte intégralJessen, S. W., J. W. Blatchford, Y. Z. Wang, D. D. Gebler et L. B. Lin. Exciton Dynamics in Poly(p-pyridyl Vinylene). Fort Belvoir, VA : Defense Technical Information Center, mars 1996. http://dx.doi.org/10.21236/ada305228.
Texte intégralGallagher, T. F. Structure Dynamics of Excited Atoms. Fort Belvoir, VA : Defense Technical Information Center, mars 1988. http://dx.doi.org/10.21236/ada198147.
Texte intégralParekh, Jatin C., et Warren C. Gibson. Dynamic Analysis of Quartz Glass Excited Acoustically. Fort Belvoir, VA : Defense Technical Information Center, juin 1992. http://dx.doi.org/10.21236/ada361416.
Texte intégralGallagher, Thomas F. Structure and Dynamics of Excited Atoms. Fort Belvoir, VA : Defense Technical Information Center, décembre 2001. http://dx.doi.org/10.21236/ada398434.
Texte intégralGallagher, Thomas F. Structure and Dynamics of Excited Atoms. Fort Belvoir, VA : Defense Technical Information Center, janvier 2005. http://dx.doi.org/10.21236/ada435243.
Texte intégralGallagher, Thomas F. Structure and Dynamics of Excited Atoms. Fort Belvoir, VA : Defense Technical Information Center, février 1987. http://dx.doi.org/10.21236/ada179887.
Texte intégralMoore, C. B. The Dynamics of Vibrationally Excited Molecules. Fort Belvoir, VA : Defense Technical Information Center, novembre 1985. http://dx.doi.org/10.21236/ada163764.
Texte intégral