Littérature scientifique sur le sujet « Fanconi Anemia Fanconi Anemia Fanconi Anemia DNA Repair DNA Damage Serine Phosphorylation »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Fanconi Anemia Fanconi Anemia Fanconi Anemia DNA Repair DNA Damage Serine Phosphorylation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Fanconi Anemia Fanconi Anemia Fanconi Anemia DNA Repair DNA Damage Serine Phosphorylation"

1

Wang, XiaoZhe, Richard D. Kennedy, Kallol Ray, Patricia Stuckert, Tom Ellenberger et Alan D. D'Andrea. « Chk1-Mediated Phosphorylation of FANCE Is Required for the Fanconi Anemia/BRCA Pathway ». Molecular and Cellular Biology 27, no 8 (12 février 2007) : 3098–108. http://dx.doi.org/10.1128/mcb.02357-06.

Texte intégral
Résumé :
ABSTRACT The eleven Fanconi anemia (FA) proteins cooperate in a novel pathway required for the repair of DNA cross-links. Eight of the FA proteins (A, B, C, E, F, G, L, and M) form a core enzyme complex, required for the monoubiquitination of FANCD2 and the assembly of FANCD2 nuclear foci. Here, we show that, in response to DNA damage, Chk1 directly phosphorylates the FANCE subunit of the FA core complex on two conserved sites (threonine 346 and serine 374). Phosphorylated FANCE assembles in nuclear foci and colocalizes with FANCD2. A nonphosphorylated mutant form of FANCE (FANCE-T346A/S374A), when expressed in a FANCE-deficient cell line, allows FANCD2 monoubiquitination, FANCD2 foci assembly, and normal S-phase progression. However, the mutant FANCE protein fails to complement the mitomycin C hypersensitivity of the transfected cells. Taken together, these results elucidate a novel role of Chk1 in the regulation of the FA/BRCA pathway and in DNA cross-link repair. Chk1-mediated phosphorylation of FANCE is required for a function independent of FANCD2 monoubiquitination.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Draga, Margarethe, Elizabeth B. Madgett, Cassandra J. Vandenberg, David du Plessis, Aisling Kaufmann, Petra Werler, Prasun Chakraborty, Noel F. Lowndes et Kevin Hiom. « BRCA1 Is Required for Maintenance of Phospho-Chk1 and G2/M Arrest during DNA Cross-Link Repair in DT40 Cells ». Molecular and Cellular Biology 35, no 22 (31 août 2015) : 3829–40. http://dx.doi.org/10.1128/mcb.01497-14.

Texte intégral
Résumé :
The Fanconi anemia DNA repair pathway is pivotal for the efficient repair of DNA interstrand cross-links. Here, we show that FA-defective (Fancc−) DT40 cells arrest in G2phase following cross-link damage and trigger apoptosis. Strikingly, cell death was reduced inFancc−cells by additional deletion of the BRCA1 tumor suppressor, resulting in elevated clonogenic survival. Increased resistance to cross-link damage was not due to loss of toxic BRCA1-mediated homologous recombination but rather through the loss of a G2checkpoint. This proapoptotic role also required the BRCA1-A complex member ABRAXAS (FAM175A). Finally, we show that BRCA1 promotes G2arrest and cell death by prolonging phosphorylation of Chk1 on serine 345 after DNA damage to sustain arrest. Our data imply that DNA-induced cross-link death in cells defective in the FA pathway is dependent on the ability of BRCA1 to prolong cell cycle arrest in G2phase.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Smogorzewska, Agata. « Fanconi Anemia : A Paradigm for Understanding DNA Repair During Replication. » Blood 134, Supplement_1 (13 novembre 2019) : SCI—32—SCI—32. http://dx.doi.org/10.1182/blood-2019-121229.

Texte intégral
Résumé :
Fanconi anemia, the most common hereditary bone marrow failure disorder, results from defective repair of DNA interstrand crosslinks (ICLs), which covalently link complementary DNA strands causing replication stalling. Mutations in 22 different genes (FANCA-FANCW) have been shown to result in Fanconi anemia. Their protein products work at different stages of DNA repair leading to considerable heterogeneity in human phenotypes. The majority of the FANC gene mutations are recessively inherited with the exceptions of FANCB and FANCR/RAD51. FANCB is X-linked, and all FANCR/RAD51 mutations arise de novo, affect only one allele, and the mutant protein acts as a dominant negative against the wild type protein. Despite advances in the molecular diagnosis of Fanconi anemia, if Fanconi anemia is suspected, chromosome breakage (DEB or MMC) testing on patient cells is essential. We have seen a number of patients referred to the International Fanconi Anemia Registry (http://lab.rockefeller.edu/smogorzewska/ifar/) who are misdiagnosed with Fanconi anemia based solely on the presence of a FANC gene variant in gene panel or whole exome sequencing. Conversely, blood mosaicism may lead to a negative blood chromosome breakage test. If there is a high suspicion of Fanconi anemia, but blood breakage results are negative, breakage test on patient fibroblasts should be performed. Diagnosis of Fanconi anemia should also be entertained in young adults presenting with squamous cell carcinoma of the aerodigestive tract, since this may be their initial presentation of Fanconi anemia and conventional chemotherapy dose would precipitate bone marrow failure in these patients. In my talk, I will discuss the mechanism of the Fanconi anemia repair pathway during DNA replication. Then, I will concentrate on the mechanism of bone marrow failure and tumorigenesis in Fanconi anemia. I will explore the hypothesis that the endogenously produced aldehydes including some that are still unknown, contribute to disease development. Fanconi anemia-deficient hematopoietic stem cells have an autonomous DNA repair defect. Accumulation of DNA damage leads to apoptosis due to the activation of p53. If cells escape death, mutagenesis may lead to the development of leukemia. The sources of endogenous DNA damage are poorly understood. Cell cycle induction of Fanconi anemia pathway-deficientmouse hematopoietic stem cells results in DNA damage and bone marrow failure, which implies that the DNA lesions encountered during replication are the culprit. There is mounting evidence that the endogenous aldehydes, including acetaldehyde and formaldehyde,may cause those DNA lesions. To identify other metabolites that may induce bone marrow failure in Fanconi anemia, we used a library of CRISPR guides to target Cas9 to metabolic genes to screen for and identify synthetic lethality with Fanconi anemia deficiency. We have identifiedALDH9A1as the most significantly depleted gene in FANCD2-/- cells. The synthetically lethal interaction was validated using single gene editing in human umbilical cord-derived hematopoietic stem progenitor cells. We propose a model in which aldehydes that are metabolized by ALDH9A1 accumulate in the absence of this enzyme and cause DNA damage that requires the Fanconi anemia pathway proteins for repair, survival, and suppression of tumorigenesis. We are testing this model using Fanca-/-Aldh9a1-/-mice. Disclosures No relevant conflicts of interest to declare.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Munkhjargal, Anudari, Myung-Jin Kim, Da-Yeon Kim, Young-Jun Jeon, Young-Hoon Kee, Lark-Kyun Kim et Yong-Hwan Kim. « Promyelocytic Leukemia Proteins Regulate Fanconi Anemia Gene Expression ». International Journal of Molecular Sciences 22, no 15 (21 juillet 2021) : 7782. http://dx.doi.org/10.3390/ijms22157782.

Texte intégral
Résumé :
Promyelocytic leukemia (PML) protein is the core component of subnuclear structures called PML nuclear bodies that are known to play important roles in cell survival, DNA damage responses, and DNA repair. Fanconi anemia (FA) proteins are required for repairing interstrand DNA crosslinks (ICLs). Here we report a novel role of PML proteins, regulating the ICL repair pathway. We found that depletion of the PML protein led to the significant reduction of damage-induced FANCD2 mono-ubiquitination and FANCD2 foci formation. Consistently, the cells treated with siRNA against PML showed enhanced sensitivity to a crosslinking agent, mitomycin C. Further studies showed that depletion of PML reduced the protein expression of FANCA, FANCG, and FANCD2 via reduced transcriptional activity. Interestingly, we observed that damage-induced CHK1 phosphorylation was severely impaired in cells with depleted PML, and we demonstrated that CHK1 regulates FANCA, FANCG, and FANCD2 transcription. Finally, we showed that inhibition of CHK1 phosphorylation further sensitized cancer cells to mitomycin C. Taken together, these findings suggest that the PML is critical for damage-induced CHK1 phosphorylation, which is important for FA gene expression and for repairing ICLs.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Repczyńska, Anna, et Olga Haus. « Genetic background and diagnosis of Fanconi anemia ». Postępy Higieny i Medycyny Doświadczalnej 74 (31 décembre 2020) : 589–600. http://dx.doi.org/10.5604/01.3001.0014.6332.

Texte intégral
Résumé :
Fanconi anemia (FA) is a rare genetic disease caused by mutations in genes whose protein products are involved in important cell processes such as replication, cell cycle control and repair of DNA damage. FA is characterized by congenital malformations, bone marrow failure and high risk of cancer. Phenotypic symptoms, present in about 75% of patients, most often include such abnormalities as short stature, microcephaly, thumb and radial side of the limb defects, abnormal skin pigmentation, gastrointestinal and genitourinary defects. Progressive bone marrow failure occurs in the first decade of life, often initially with leukopenia or thrombocytopenia. The most common cancers occurring in patients with FA are myelodysplastic syndromes and acute myeloid leukemia, as well as solid tumors of the head and neck, skin, gastrointestinal system and genitourinary system. So far, 22 genes of Fanconi anemia (FANC) have been identified, which are located on the autosomal chromosomes, except for FANCB, which is located on the X chromosome. Protein products of FANC genes are the elements of Fanconi anemia pathway, which regulates DNA damage repair systems. Genetic diagnostics of Fanconi anemia should start by testing crosslinking agents: mitomycin C (MMC) or diepoxybutane (DEB) assuring differential diagnosis of chromosome instability syndromes. In patients with Fanconi anemia, an increased number of chromosomal gaps and breaks as well as specific radial structures are observed. In order to detect a mutation underlying Fanconi anemia, molecular techniques should be used, preferentially next generation sequencing (NGS).
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dan, Chenchen, Hongjing Pei, Buzhe Zhang, Xuan Zheng, Dongmei Ran et Changzheng Du. « Fanconi anemia pathway and its relationship with cancer ». Genome Instability & ; Disease 2, no 3 (juin 2021) : 175–83. http://dx.doi.org/10.1007/s42764-021-00043-0.

Texte intégral
Résumé :
AbstractFanconi Anemia (FA) is a rare inherited hematological disease, caused by mutations in genes involved in the DNA interstrand crosslink (ICL) repair. Up to date, 22 genes have been identified that encode a series of functionally associated proteins that recognize ICL lesion and mediate the activation of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. The FA pathway is strictly regulated by complex mechanisms such as ubiquitination, phosphorylation, and degradation signals that are essential for the maintenance of genome stability. Here, we summarize the discovery history and recent advances of the FA genes, and further discuss the role of FA pathway in carcinogenesis and cancer therapies.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Collins, Natalie B., Andrei Tomashevski et Gary M. Kupfer. « Phosphorylation of FANCA on S1449 Is Important for Fanconi Anemia (FA) Pathway Function. » Blood 108, no 11 (16 novembre 2006) : 186. http://dx.doi.org/10.1182/blood.v108.11.186.186.

Texte intégral
Résumé :
Abstract Previous work in our lab and others has shown that the Fanconi anemia proteins, FANCG and FANCA, are phosphoproteins. FANCG is phosphorylated at mitosis, and these phosphorylations are required for proper exit from chromatin at mitosis. FANCG is also phosphorylated after DNA damage, with the phosphorylation site required for wild-type sensitivity to DNA damaging agents. FANCA is also phosphorylated after DNA damage and localized to chromatin, but the site and significance of this phosphorylation were previously unknown. Mass spectrometry of FANCA revealed one phosphopeptide with phosphorylation on serine 1449. Site-directed mutagenesis of this residue to alanine (S1449A) abolished a slower mobility form of FANCA seen after MMC treatment. Furthermore, the S1449A mutant failed to completely correct the MMC hypersensitivity of FA-A mutant cells. S1449A mutant cells displayed lower than wild-type levels of FANCD2 monoubiquitination following DNA damage, and an increased number of gross chromosomal aberrations were seen in metaphase spreads from S1449A mutant cells when compared to wild type cells. Using a GFP reporter substrate to measure homologous recombination, cells expressing the S1449A FANCA failed to completely correct the homologous recombination defect seen in FA cells. Taken together, cells expressing FANCA S1449A display a variety of FA-associated phenotypes, suggesting that the phosphorylation of S1449 is a functionally significant event. The DNA damage response in human cells is, in large part, coordinated by phosphorylation events initiated by apical kinases ATM and ATR. S1449 is found in a consensus ATM site, therefore studies are underway to determine if ATM or ATR is the kinase responsible for FANCA phosphorylation at S1449. Phosphorylation is a crucial process in transducing the DNA damage response, and phosphorylation of FA proteins appears critical to both localization and function of the proteins. Understanding how phosphorylation marks are placed on FANCA will give insight into the role of FANCA in the DNA damage response.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bagby, Grover. « Recent advances in understanding hematopoiesis in Fanconi Anemia ». F1000Research 7 (24 janvier 2018) : 105. http://dx.doi.org/10.12688/f1000research.13213.1.

Texte intégral
Résumé :
Fanconi anemia is an inherited disease characterized by genomic instability, hypersensitivity to DNA cross-linking agents, bone marrow failure, short stature, skeletal abnormalities, and a high relative risk of myeloid leukemia and epithelial malignancies. The 21 Fanconi anemia genes encode proteins involved in multiple nuclear biochemical pathways that effect DNA interstrand crosslink repair. In the past, bone marrow failure was attributed solely to the failure of stem cells to repair DNA. Recently, non-canonical functions of many of the Fanconi anemia proteins have been described, including modulating responses to oxidative stress, viral infection, and inflammation as well as facilitating mitophagic responses and enhancing signals that promote stem cell function and survival. Some of these functions take place in non-nuclear sites and do not depend on the DNA damage response functions of the proteins. Dysfunctions of the canonical and non-canonical pathways that drive stem cell exhaustion and neoplastic clonal selection are reviewed, and the potential therapeutic importance of fully investigating the scope and interdependences of the canonical and non-canonical pathways is emphasized.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Müller, Lars U. W., Michael D. Milsom, Chad E. Harris, Rutesh Vyas, Kristina M. Brumme, Kalindi Parmar, Lisa A. Moreau et al. « Overcoming reprogramming resistance of Fanconi anemia cells ». Blood 119, no 23 (7 juin 2012) : 5449–57. http://dx.doi.org/10.1182/blood-2012-02-408674.

Texte intégral
Résumé :
Abstract Fanconi anemia (FA) is a recessive syndrome characterized by progressive fatal BM failure and chromosomal instability. FA cells have inactivating mutations in a signaling pathway that is critical for maintaining genomic integrity and protecting cells from the DNA damage caused by cross-linking agents. Transgenic expression of the implicated genes corrects the phenotype of hematopoietic cells, but previous attempts at gene therapy have failed largely because of inadequate numbers of hematopoietic stem cells available for gene correction. Induced pluripotent stem cells (iPSCs) constitute an alternate source of autologous cells that are amenable to ex vivo expansion, genetic correction, and molecular characterization. In the present study, we demonstrate that reprogramming leads to activation of the FA pathway, increased DNA double-strand breaks, and senescence. We also demonstrate that defects in the FA DNA-repair pathway decrease the reprogramming efficiency of murine and human primary cells. FA pathway complementation reduces senescence and restores the reprogramming efficiency of somatic FA cells to normal levels. Disease-specific iPSCs derived in this fashion maintain a normal karyotype and are capable of hematopoietic differentiation. These data define the role of the FA pathway in reprogramming and provide a strategy for future translational applications of patient-specific FA iPSCs.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Trottier, Magan, et Stephen Meyn. « Fanconi Anemia and the Response of Human Hematopoietic Cells to DNA Damage ». Blood 112, no 11 (16 novembre 2008) : 441. http://dx.doi.org/10.1182/blood.v112.11.441.441.

Texte intégral
Résumé :
Abstract Given their critical role in the generation and renewal of the hematopoietic system, we hypothesize that hematopoietic stem and primitive cells employ unusually stringent DNA damage responses to maintain genome stability. We also propose that Fanconi anemia proteins prevent bone marrow failure through their participation in these DNA repair and damage response pathways. We are testing both hypotheses by characterizing cellular responses to DNA double-strand breaks (DSBs) in 3 lineage-negative populations of hematopoietic cells isolated from human umbilical cord blood: hematopoietic stem cell-containing primitive CD34+ CD38− CD45RA−, early progenitor CD34+ CD38+ and late progenitor CD34− CD38+. Two key events in the initial cellular response to DSBs are phosphorylation of H2AX histones in chromatin at or near DSBs, and association of 53BP1 with gamma-H2AX at DSB sites. Once DSBs are detected, they then are repaired by two major pathways: error-prone non-homologous end-joining (NHEJ), utilized throughout the cell cycle, and error-free homologous recombination (HR), used when sister chromatids are present during S/G2 phases of the cell cycle. To study the response to and repair of DSBs in our sorted hematopoietic populations, we exposed quiescent and cytokine-stimulated haematopoietic cells and human fibroblasts to ionizing radiation (IR). Irradiation with 3 Gy rapidly induced formation of 53BP1 foci in all cell types, both cycling and non-cycling. In contrast, X-irradiation only induced foci of the Fanconi anemia protein FANCD2 in cycling cells. The majority of the induced FANCD2 foci colocalized with foci of gamma-H2AX. The subsequent persistence of 53BP1 foci at X-ray induced damage sites differed significantly between the lin− hematopoietic cells and the fibroblasts. During the first 6 hours following IR, cycling primitive and progenitor hematopoietic cells resolved 53BP1 foci more slowly than cycling human primary fibroblasts. In addition, X-ray induced 53BP1 foci persisted even longer in quiescent primitive CD34+ CD38− and early progenitor CD34+ CD38+ cells than in their cycling counterparts, while foci resolution kinetics were similar in quiescent and cycling late progenitor CD34− CD38+ cells and in fibroblasts. We also used a neutral comet assay to determine the kinetics of DSB rejoining following exposure to 15 Gy. We found that resolution of 53BP1 foci is not directly linked to rejoining of DSBs in lin− hematopoietic cells, as they rejoin DSBs more rapidly than primary fibroblasts, yet resolve 53BP1 foci more slowly. The effect is most prominent in primitive CD34− CD38− cells. Both cycling and non-cycling fibroblasts displayed similar kinetics of DSB rejoining. However, quiescent lin− hematopoietic cells displayed persistent breaks compared to cycling counterparts or to fibroblasts. Of particular note, quiescent lin− hematopoietic cells still had not rejoined a significant fraction of induced DSBs 24 hours post irradiation. Our results indicate that human primitive and progenitor hematopoetic cells differ from fibroblasts in their DNA damage responses and DSB repair kinetics. Our findings also suggest that, unlike fibroblasts, progression through the cell cycle plays a key role in the rapid repair of DSBs in hematopoietic cells. Because Lin− hematopoietic cells are more efficient at rejoining DSBs when cycling, we suggest that error-free HR repair plays an important role in DSB repair in these cells. Our detection of DNA damage-induced FANCD2 foci only in cycling lin− hematopoietic cells provides indirect support for this conclusion, as FA proteins are thought to be involved in HR repair. We are currently testing this hypothesis by determining the effect of knocking down FA protein expression on DSB repair and DNA damage responses in our three hematopoietic populations.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Fanconi Anemia Fanconi Anemia Fanconi Anemia DNA Repair DNA Damage Serine Phosphorylation"

1

Nadler, Jessica Judith. « Fanconi Anemia complementation group C reveals a role for DNA damage repair in primordial germ cell development / ». Thesis, Connect to this title online ; UW restricted, 2001. http://hdl.handle.net/1773/10272.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hain, Karolina Ottilia. « Characterisation of human SLX4/FANCP, a coordinator of DNA repair nucleases ». Thesis, University of Dundee, 2012. https://discovery.dundee.ac.uk/en/studentTheses/bf9a5ba3-7cea-4d25-8e8c-aa4cd5de3fae.

Texte intégral
Résumé :
Budding yeast Slx4 binds to the structure-specific DNA repair nucleases Slx1 and Rad1XPF-Rad10ERCC1, and it was reported that Slx4 is essential for DNA flap cleavage by Rad1XPF-Rad10ERCC1 during certain types of DNA repair in yeast. At the outset of this thesis, bioinformatic analyses identified the uncharacterised protein BTBD12 in higher eukaryotes as a putative orthologue of yeast Slx4. In the first results chapter of this thesis, I describe the identification of BTBD12-interacting proteins, including XPF-ERCC1 and SLX1. These findings led me to refer to BTBD12 as human SLX4. I found that SLX4 binds to another structure-specific nuclease MUS81-EME1, and other proteins involved in telomere maintenance and cell cycle progression. The remainder of this chapter describes detailed biochemical analysis of the nuclease activities associated with the SLX4 complex isolated from human cells. Work from this lab and others revealed that depletion of SLX4 from human cells using siRNAs causes defects in the repair of DNA interstrand crosslinks (ICLs). Inherited mutations in humans that reduce the efficiency of ICL repair cause Fanconi anaemia (FA). The cellular sensitivity of SLX4 depleted cells to ICLs prompted me to investigate SLX4 as a candidate FA gene. Dr. Johan de Winter (VU University Medical Center, Amsterdam) and Dr. Detlev Schindler (University of Wurzburg) had identified several patients with unclassified FA that was not caused by mutations in the FA genes known at the time. In the second results I describe characterisation of SLX4, and the SLX4 holo-complex, in cells from some of these FA patients who had bi-allelic SLX4 mutations. In three of the patients SLX4 was expressed at normal levels but was missing part of the first, and all of the second, UBZ-type putative ubiquitin-binding domain. This prompted me to investigate the function of the SLX4 UBZ domains. I found that the first, but not the second, UBZ domain of SLX4 binds to ubiquitin in vitro and targets SLX4 to sites of DNA damage in vivo. Furthermore, the first but not the second SLX4 UBZ domain appears to be required for ICL repair, demonstrating the important of correctly localising SLX4 for DNA repair. In the final chapter, I present preliminary data which suggests that SLX4 is regulated in an unusual manner in during S-phase of the cell cycle, and that SLX4 interacts with the PLK1 kinase in a phosphorylation-dependent manner.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Xie, Jenny X. « Regulation of BACH1/FANCJ Function in DNA Damage Repair : A Dissertation ». eScholarship@UMMS, 2009. https://escholarship.umassmed.edu/gsbs_diss/435.

Texte intégral
Résumé :
The DNA damage response (DDR) pathway is a complicated network of interacting proteins that function to sense and remove DNA damage. Upon exposure to DNA damage, a signaling cascade is generated. The damage is either removed, restoring the original genetic sequence, or apoptosis is activated. In the absence of DDR, cells are unable to effectively process DNA damage. Unprocessed DNA damage can lead to chromosomal changes, gene mutations, and malignant transformation. Thus, the proteins involved in DDR are critical for maintaining genomic stability. One essential DDR protein is the BRCA1 Associated C-terminal Helicase, BACH1. BACH1 was initially identified through its direct association with the BRCT domain of the Breast Cancer Associated Gene, BRCA1. Similar to BRCA1, germline mutations in BACH1were identified in patients with early onset breast cancer. Interestingly, the disease-associated mutations in BACH1 were shown to have altered helicase activity in vitro, providing a direct link between BACH1 helicase activity and disease development. The correlation between BACH1 and cancer predisposition was further confirmed by the identification of BACH1 as the cancer syndrome Fanconi anemia (FA) gene product, FANCJ. Similar to other FA proteins, suppression of FANCJ leads to decreased homologous recombination, enhanced sensitivity to DNA interstrand crosslinking (ICL) agents, and chromosomal instability. In an effort to further understand the function of FANCJ in DDR, FANCJ was shown to directly associate with the mismatch repair (MMR) protein MLH1. This interaction is facilitated by lysines 141 and 142 within the helicase domain of FANCJ. Importantly, the FANCJ/MLH1 interaction is critical for ICL repair. Furthermore, in an attempt to dissect the binding site of FANCJ on MLH1, we discovered an HNPCC associated MLH1 mutation (L607H) that has intact mismatch repair, but lacks FANCJ interaction. In contrast to the MLH1 interaction, the FANCJ/BRCA1 interaction was not required for correcting the cellular defects in FANCJ null cells. Thus, in an effort to understand the functional significance of the FANCJ/BRCA1 interaction, we discovered that FANCJ promotes Pol η dependent translesion synthesis (TLS) bypass when uncoupled from BRCA1. In this thesis, we provide evidence suggesting that FANCJ and MLH1 are functionally linked and that the interaction of these proteins is critical for repair choice.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Inano, Shojiro. « The E3 ligase RFWD3 promotes timely removal of both RPA and RAD51 from DNA damage sites to facilitate homologous recombination ». Kyoto University, 2017. http://hdl.handle.net/2433/227591.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yarde, Danielle N. « The Fanconi Anemia (FA)/BRCA DNA Damage Repair Pathway is Regulated by NF-κB and Mediates Drug Resistance in Multiple Myeloma ». Scholar Commons, 2010. https://scholarcommons.usf.edu/etd/1818.

Texte intégral
Résumé :
The Fanconi Anemia (FA)/BRCA DNA damage repair pathway plays a critical role in the cellular response to stress induced by DNA alkylating agents and greatly influences drug response in cancer treatment. We recently reported that FA/BRCA DNA damage repair pathway genes are overexpressed and causative for resistance in multiple myeloma (MM) cell lines selected for resistance to melphalan. We hypothesized that the FA/BRCA DNA damage repair pathway mediates response and resistance to chemotherapeutic agents used to treat multiple myeloma and other cancers, and targeting this pathway is vital to overcoming drug resistance. In this dissertation, we show that FA/BRCA pathway genes are collectively overexpressed in MM, prostate, and ovarian cancer cell lines selected for resistance to melphalan and cisplatin, respectively. Interestingly, cells selected for resistance to topoisomerase II inhibitors selectively overexpress only FANCF. We also show that FA/BRCA pathway expression can be inhibited by the proteasome inhibitor bortezomib. FA/BRCA pathway mRNA expression was inhibited by bortezomib in myeloma cell lines and patient samples. FANCD2 gene and protein expression are downregulated by bortezomib, and remain attenuated in the face of melphalan treatment. Melphalan-induced FANCD2 foci formation was also inhibited by bortezomib, and this drug enhanced melphalan-induced DNA damage, likely via inhibition of FA-mediated DNA damage repair. Next, we analyzed regulation of the FA/BRCA pathway. We demonstrate that NF-kappaB, specifically the Re1B/p50 subunits, transcriptionally regulates members of the FA/BRCA pathway, and inhibition of these subunits by siRNA, BMS-345541, and bortezomib reduces FA/BRCA pathway expression. Furthermore, knocking down Re1B and p50 simultaneously attenuates FANCD2 protein expression and results in diminished DNA repair and enhanced sensitivity to melphalan. Importantly, melphalan resistance was restored when FANCD2 was re-expressed in these cells. We also show that bortezomib regulates FANCD2 protein expression directly, by inhibiting FANCD2 synthesis. Finally, we demonstrate that low-dose bortezomib arrests cells in G0/G1 and also overcomes the S-phase arrest induced by melphalan, likely via inhibition of ATR. Overall, our findings provide evidence for targeting the FA/BRCA pathway, either directly or indirectly, via inhibition of NF-kappaB or ATR, to enhance chemotherapeutic response and reverse drug resistance in multiple myeloma and other cancers.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Haanpää, M. (Maria). « Hereditary predisposition to breast cancer – with a focus on AATF, MRG15, PALB2, and three Fanconi anaemia genes ». Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526204581.

Texte intégral
Résumé :
Abstract Around 5−10% of all breast cancer cases are estimated to result from a strong hereditary predisposition to the disease. However, mutations in the currently known breast cancer susceptibility genes account for only 20−30% of all familial cases. Additional factors contributing to the pathogenesis of breast cancer, therefore, await discovery. Aims of this study were to evaluate variations of the AATF and MRG15 genes as novel potential candidates for breast cancer susceptibility, to further examine the prevalence of the cancer-related PALB2 c.1592delT mutation among BRCA-negative high-risk breast cancer families counselled at the Department of Clinical Genetics, Oulu University Hospital, to identify Finnish Fanconi anaemia patients complementation groups as well as causative mutations, and to evaluate the potential role of these mutations in breast cancer susceptibility. The analysis of 121 familial breast cancer cases revealed altogether seven different sequence changes in the AATF gene. However, none of them were considered pathogenic, suggesting that germline mutations in AATF are rare or absent in breast cancer patients. Investigation of the MRG15 gene among familial breast cancer cases revealed seven previously unreported variants, but in silico analyses revealed that none of these variants appeared to modify the function of MRG15. The results suggest that MRG15 alterations are unlikely to be significant breast cancer susceptibility alleles. A previously identified pathogenic PALB2 mutation, c.1592delT, was identified in three patients from a cohort of 62 high-risk BRCA1/2-negative breast cancer patients from the Department of Clinical Genetics. PALB2 c.1592delT mutation testing should thus be a routine part of the genetic counselling protocol, particularly for BRCA1/2-negative high-risk breast cancer patients. Investigation of the complementation groups of Finnish Fanconi anaemia patients revealed a total of six different causative mutations. These mutations were examined further by analysing their prevalence in large cohorts of breast (n=1840) and prostate (n=565) cancers. However, no significant association emerged between cancer predisposition and these FA mutations
Tiivistelmä Arviolta 5−10 prosenttia kaikista rintasyöpätapauksista aiheutuu merkittävästä perinnöllisestä alttiudesta sairauteen. Tällä hetkellä tiedossa olevien rintasyövälle altistavien geenivirheiden ajatellaan kuitenkin selittävän vain noin 20−30 prosenttia kaikista perinnöllisistä tapauksista. On todennäköistä, että uusia tekijöitä, jotka osallistuvat rintasyövän patomekanismiin, on vielä löytymättä. Tämän tutkimuksen tarkoituksena oli arvioida AATF- ja MRG15-geeneissä esiintyvien muutosten mahdollista vaikutusta rintasyöpäalttiuteen, tutkia tarkemmin PALB2 c.1592delT -mutaation esiintymistä BRCA-mutaationegatiivisten korkean rintasyöpäriskin potilaiden joukossa (perinnöllisyyspoliklinikka, Oulun yliopistollinen sairaala) ja määrittää suomalaisten Fanconi-anemiapotilaiden komplementaatioryhmät, sairauden taustalla olevat mutaatiot sekä tutkia näihin mutaatioihin mahdollisesti liittyvää rintasyöpäriskiä. 121 familiaalisen rintasyöpätapauksen analyysissä löytyi yhteensä seitsemän erilaista sekvenssimuutosta AATF-geenissä. Näistä yksikään ei kuitenkaan ollut selvästi patogeeninen. Tuloksen perusteella perinnölliset rintasyövälle altistavat muutokset AATF-geenissä ovat joko erittäin harvinaisia tai niitä ei esiinny lainkaan. MRG15-geenin mutaatioanalyysissä havaittiin seitsemän aikaisemmin raportoimatonta muutosta, mutta in silico -analyysien perusteella millään muutoksista ei ole vaikutusta MRG15-proteiinin toimintaan. Tulosten perusteella on epätodennäköistä, että MRG15-geenin muutokset olisivat merkittäviä rintasyövälle altistavia muutoksia. Jo aiemmin patogeeniseksi todettu PALB2 c.1592delT -mutaatio löydettiin kolmelta niistä perinnöllisyyspoliklinikan korkean syöpäriskin 62 potilaasta, jotka olivat BRCA1/2-geenitestauksessa saaneet normaalin tuloksen. Tulostemme perusteella PALB2 c.1592delT -mutaatiotestaus tulisi Suomessa ottaa osaksi perinnöllisyyspoliklinikoiden tarjomaa tutkimusprotokollaa. Suomalaisten Fanconi-anemiapotilaiden komplementaatioryhmiä selvittävässä tutkimuksessa identifioitiin yhteensä kuusi erilaista tautia aiheuttavaa mutaatiota. Näiden muutosten esiintymistä tutkittiin myös laajoissa rinta- (n=1840) ja eturauhassyöpäaineistoissa (n=565). Tilastollisesti merkittävää assosiaatiota ei kuitenkaan todettu suomalaisten FA-mutaatioiden ja syöpäalttiuden välillä
Styles APA, Harvard, Vancouver, ISO, etc.
7

Litman, Rachel. « Characterization of the BACH1 Helicase in the DNA Damage Response Pathway : a Dissertation ». eScholarship@UMMS, 2007. https://escholarship.umassmed.edu/gsbs_diss/329.

Texte intégral
Résumé :
DNA damage response pathways are a complicated network of proteins that function to remove and/or reverse DNA damage. Following genetic insult, a signal cascade is generated, which alerts the cell to the presence of damaged DNA. Once recognized, the damage is either removed or the damaged region is excised, and the original genetic sequence is restored. However, when these pathways are defective the cell is unable to effectively mediate the DNA damage response and the damage persists unrepaired. Thus, the proteins that maintain the DNA damage response pathway are critical in preserving genomic stability. One essential DNA repair protein is the Breast Cancer Associated gene, BRCA1. BRCA1 is essential for mediating the DNA damage response, facilitating DNA damage repair, and activating key cell cycle checkpoints. Moreover, mutations in BRCA1 lead to a higher incidence of breast and ovarian cancer, highlighting the importance of BRCA1 as a tumor suppressor. In an effort to better understand how BRCA1 carried out these functions, researchers sought to identify additional BRCA1 interacting proteins. This led to the identification of several proteins including the BRCA1 Associated C-terminal Helicase, BACH1. Due to the direct interaction of BACH1 with a region of BRCA1 essential for DNA repair and tumor suppression, it was speculated that BACH1 may help support these BRCA1 function(s). In fact, initial genetic screenings confirmed that mutations in BACH1 correlated not only with hereditary breast cancer, but also with defects in DNA damage repair processes. The initial correlation between BACH1 and cancer predisposition was further confirmed when mutations in BACH1 were identified in the cancer syndrome Fanconi anemia (FA) (complementation group FA-J), thus giving BACH1 its new name FANCJ. These findings supported a previously established link between the FA and BRCA pathways and between FA and DNA repair. In particular, we demonstrated that similar to other FA/BRCA proteins, suppression of FANCJ lead to a substantial decrease in homologous recombination and enhanced both the cellular sensitivity to DNA interstrand cross-linking agents and chromosomal instability. What remained unknown was specifically how FANCJ functioned and whether these functions were dependent on its interaction with BRCA1 or other associated partners. In fact, we identified that FANCJ interacted directly with the MMR protein MLH1. Moreover, we found that the FANCJ/BRCA1 interaction was not required to correct the cellular defects in FA-J cells, but rather that the FANCJ/MLH1 interaction was required. Although both the FA/BRCA and MMR pathways undoubtedly mediate the DNA damage response, there was no evidence to suggest that these pathways were linked, until recently. Our findings not only indicate a physical link between these pathways by protein-protein interaction, but also demonstrated a functional link.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Collins, Natalie Bucheimer. « Regulation and function of the Fanconi anemia pathway for genome maintenance ». 2008. http://proquest.umi.com/pqdweb?did=1801444001&sid=1&Fmt=2&clientId=3507&RQT=309&VName=PQD.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Krejčová, Kateřina. « Molekulární mechanismus regulace opravné dráhy Fanconiho anémie fosforylací proteinu FANCI ». Master's thesis, 2019. http://www.nusl.cz/ntk/nusl-396674.

Texte intégral
Résumé :
Fanconi anemia is an autosomal recessive disorder caused by mutation in one of Fanconi genes and it is manifested by developmental abnormalities, bone marrow failure, predisposition to cancer, cellular sensitivity to cross-linking agents and many other symptoms. Proteins encoded by Fanconi genes and some other proteins are part of Fanconi anemia pathway (FA pathway), which is responsible for DNA repair of an interstrand cross-link (ICL). The repair by this pathway requires monoubiquitination of FANCD2, which is induced and regulated by ATR dependent FANCI phosphorylation. The FANCI phosphorylation initiates the FA pathway but the molecular mechanism of this initialization is not known. Furthermore the proper function of entire pathway requires both: sequence of phosphorylation events of FANCI and monoubiquitination of FANCI:FANCD2 complex . The principle of this work was to study molecular mechanism of initiation and regulation of FA pathway by FANCI phosphorylation. Therefore phosphomimetic mutants of FANCI have been created to investigate their role in processes leading to FANCD2 monoubiquitination. The main aim was to reveal how the phosphorylation of FANCI affects DNA binding and also DNA binding of FANCI:FANCD2 complex. Since both DNA and FANCI phosphorylation are required for proper FANCD2...
Styles APA, Harvard, Vancouver, ISO, etc.
10

Somyajit, Kumar. « Role of Mammalian RAD51 Paralogs in Genome Maintenance and Tumor Suppression ». Thesis, 2014. http://hdl.handle.net/2005/3032.

Texte intégral
Résumé :
My research was focused on understanding the importance of mammalian RAD51 paralogs in genome maintenance and suppression of tumorigenesis. The investigation carried out during this study has been addressed toward gaining more insights into the involvement of RAD51 paralogs in DNA damage signalling, repair of various types of lesions including double stranded breaks (DSBs), daughter strand gaps (DSGs), interstrand crosslinks (ICLs), and in the protection of stalled replication forks. My study highlights the molecular functions of RAD51 paralogs in Fanconi anemia (FA) pathway of ICL repair, in the ATM and ATR mediated DNA damage responses, in homologous recombination (HR), and in the recovery from replication associated lesions. My research also focused on the development of a novel photoinducible ICL agent for targeted cancer therapy. The thesis has been divided into following sections as follows: Chapter I: General introduction that describes about DNA damage responses and the known functions of RAD51 paralogs across species in DNA repair and checkpoint The genome of every living organism is susceptible to various types of DNA damage and mammalian cells are evolved with various DNA damage surveillance mechanisms in response to DNA damages. In response to DNA damage, activated checkpoints arrest the cell cycle progression transiently and allow the repair of damaged DNA. Upon completion of DNA repair, checkpoints are deactivated to resume the normal cell cycle progression. Defective DNA damage responses may lead to chromosome instability and tumorigenesis. Indeed, genome instability is associated with several genetic disorders, premature ageing and various types of cancer in humans. The major cause of chromosome instability is the formation of DSBs and DSGs. Both DSBs and DSGs are the most dangerous type of DNA lesions that arise endogenously as well as through exogenous sources such as radiations and chemicals. Spontaneous DNA damage is due to generation of reactive oxygen species (ROS) through normal cellular metabolism. Replication across ROS induced modified bases and single strand breaks (SSBs) leads to DSGs and DSBs, respectively. Such DNA lesions need to be accurately repaired to maintain the integrity of the genome. To understand the various cellular responses that are triggered after different types of DNA damage and the possible roles of RAD51 paralogs in these processes, chapter I of the thesis has been distributed in to multiple sections as follows: Briefly, the initial portion of the chapter provides a glimpse of various types of DNA damage responses and repair pathways to deal with the lesions arising from both endogenous as well as exogenous sources. Owing to the vast range of cellular responses and pathways, the following section provides the detailed description and mechanisms of various pathways involved in taking care of wide range of DNA lesions from SSBs to DSBs. Subsequent section of chapter I provides a comprehensive description of maintenance of genome stability at the replication fork and telomeres. Germline mutations in the genes that regulate genome integrity cause various genetic disorders and cancer. Mutations in ATM, ATR, MRE11, NBS1, BLM and FANC (1-16), BRCA1 and BRCA2 that are known to regulate DNA damage signaling, DNA repair and genome integrity lead to chromosome instability disorders such as ataxia-telangiectasia, ATR-Seckel syndrome, AT-like disorder, Nijmegen breakage syndrome, Bloom syndrome, FA, and breast and ovarian cancers respectively. Interestingly, RAD51 paralog mutations are reported in patients with FA-like disorder and various types of cancers including breast and ovarian cancers. Mono-allelic germline mutations in all RAD51 paralogs are reported to cause cancer in addition to the reported cases of FA-like disorder with bi-allelic germline mutations in RAD51C and XRCC2. In accordance, the last section of the chapter has been dedicated to describe the genetics of breast and ovarian cancers and the known functions of tumor suppressors such as BRCA1, BRCA2 and RAD51 paralogs in the protection of genome. Despite the identification of five RAD51 paralogs nearly two decades ago, the molecular mechanism(s) by which RAD51 paralogs regulate HR and genome maintenance remain obscure. To gain insights into the molecular mechanisms of RAD51 paralogs in DNA damage responses and their link with genetic diseases and cancer, the following objectives were laid for my PhD thesis: 1) To understand the functional role of RAD51 paralog RAD51C in FA pathway of ICL repair and DNA damage signalling. 2) To dissect the ATM/ATR mediated targeting of RAD51 paralog XRCC3 in the repair of DSBs and intra S-phase checkpoint. 3) To uncover the replication restart pathway after transient replication pause and the involvement of distinct complexes of RAD51 paralogs in the protection of replication forks. 4) To design photoinducible ICL agent that can be activated by visible light for targeted cancer therapy. Chapter II: Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: Implications for Fanconi anemia and breast cancer susceptibility RAD51C, a RAD51 paralog has been implicated in HR. However, the underlying mechanism by which RAD51C regulates HR mediated DNA repair is elusive. In 2010, a study identified biallelic mutation in RAD51C leading to FA-like disorder, whereas a second study reported monoallelic mutations in RAD51C associated with increased risk of breast and ovarian cancers. However, the role of RAD51C in the FA pathway of DNA cross-link repair and as a tumor suppressor remained obscure. To understand the role of RAD51C in FA pathway of ICL repair and DNA damage response, we employed genetic, biochemical and cell biological approaches to dissect out the functions of RAD51C in genome maintenance. In our study, we observed that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G2/M accumulation, which are hallmarks of the FA phenotype. We found that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrated that RAD51C plays a vital role in the HR-mediated repair of DSBs associated with replication. Finally, we showed that RAD51C participates in ICL and DSB induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C displayed that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor. Chapter III: ATM-and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair The RAD51 paralogs XRCC3 and RAD51C have been implicated in HR and DNA damage responses, but the molecular mechanism of their participation in these pathways remained obscured. In our study, we showed that an SQ motif serine 225 in XRCC3 is phosphorylated by ATR kinase in an ATM signaling pathway. We found that RAD51C in CX3 complex but not in BCDX2 complex is essential for XRCC3 phosphorylation, and this modification follows end resection and is specific to S and G2 phases. XRCC3 phosphorylation was found to be required for chromatin loading and stabilization of RAD51 and HR-mediated repair of DSBs. Notably, in response to DSBs, XRCC3 participates in the intra-S-phase checkpoint following its phosphorylation and in the G2/M checkpoint independently of its phosphorylation. Strikingly, we found that XRCC3 distinctly regulates recovery of stalled and collapsed replication forks such that phosphorylation was required for the HR-mediated recovery of collapsed replication forks but is dispensable for the recovery of stalled replication forks. Together, our findings suggest that XRCC3 is a new player in the ATM/ATR-induced DNA damage responses to control checkpoint and HR-mediated repair. Chapter IV: RAD51 paralogs protect stalled forks and mediate replication restart in an FA-BRCA independent manner Mammalian RAD51 paralogs RAD51 B, C, D, XRCC2 and XRCC3 are critical for genome maintenance. To understand the crucial roles of RAD51 paralogs during spontaneously arising DNA damage, we have studied the RAD51 paralogs assembly during replication and examined the replication fork stability and its restart. We found that RAD51 paralogs are enriched onto the S-phase chromatin spontaneously. Interestingly, the number of 53BP1 nuclear bodies in G1-phase and micro-nucleation which serve as markers for under replicated lesions increases after genetic ablation of RAD51C, XRCC2 and XRCC3. Furthermore, we showed that RAD51 paralogs are specifically enriched at two major fragile sites FRA3B and FRA16D after replication fork stalling. We found that all five RAD51 paralogs bind to nascent DNA strands after replication fork stalling and protect the fork. Nascent replication tracts created before fork stalling with hydroxyurea degrade in the absence of RAD51 paralogs but remain stable in wild-type cells. This function was dependent on ATP binding at the walker A motif of RAD51 paralogs. Our results also suggested that RAD51 paralogs assemble into BCDX2 complex to prevent generation of DSBs at stalled replication forks, thereby safeguarding the pre-assembled replisome from the action of nucleases. Strikingly, we showed that RAD51C and XRCC3 in complex with FANCM promote the restart of stalled replication forks in an ATP hydrolysis dependent manner. Moreover, RAD51C R258H mutation that was identified in FA-like disorder abrogates the interaction of RAD51C with FANCM and XRCC3, and prevents fork restart. Thus, assembly of RAD51 paralogs in different complexes prevents nucleolytic degradation of stalled replication forks and promotes restart to maintain genomic integrity. Chapter V: Trans-dichlorooxovandium(IV) complex as a potent photoinducible DNA interstrand crosslinker for targeted cancer therapy Although DNA ICL agents such as MMC, cisplatin and psoralen are known to serve as anticancer drugs, these agents affect normal cells as well. Moreover, tumor resistance to these agents has been reported. We have designed and synthesized a novel photoinducible DNA crosslinking agent (ICL-2) which is a derivative of oxovanadiumterpyridine complex with two chlorides in trans position. We found that ICL-2 can be activated by UV-A and visible light to enable DNA ICLs. ICL-2 efficiently activated FA pathway of ICL repair. Strikingly, photoinduction of ICL-2 induces prolonged activation of cell cycle checkpoint and high degree of cell death in FA pathway defective cells. Moreover, we showed that ICL-2 specifically targets cells that express pathological RAD51C mutants. Our findings suggest that ICL-2 can be potentially used for targeted cancer therapy in patients with gene mutations in FA and HR pathway.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Fanconi Anemia Fanconi Anemia Fanconi Anemia DNA Repair DNA Damage Serine Phosphorylation"

1

Aqeel, Amna, Javaria Zafar, Naureen Ehsan, Qurat-Ul-Ain, Mahnoor Tariq et Abdul Hannan. « Interstrand Crosslink Repair : New Horizons of DNA Damage Repair ». Dans DNA - Damages and Repair Mechanisms. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97551.

Texte intégral
Résumé :
Since the dawn of civilization, living organisms are unceasingly exposed to myriads of DNA damaging agents that can temper the ailments and negatively influence the well-being. DNA interstrand crosslinks (ICLs) are spawned by various endogenous and chemotherapeutic agents, thus posing a somber menace to genome solidity and cell endurance. However, the robust techniques of damage repair including Fanconi anemia pathway, translesion synthesis, nucleotide excision and homologous recombination repair faithfully protect the DNA by removing or tolerating damage to ensure the overall survival. Aberrations in such repair mechanisms adverse the pathophysiological states of several hereditary disorders i.e. Fanconi Anemia, xeroderma pigmentosum, cerebro-oculo-facio-skeletal syndrome and cockayne syndrome etc. Although, the recognition of ICL lesions during interphase have opened the new horizons of research in the field of genetics but still the detailed analysis of conditions in which repair should occur is largely elusive.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Guo, Rong, et Weidong Wang. « A DNA-damage Response Network of Fanconi Anemia and BRCA Proteins ». Dans DNA Repair, Genetic Instability, and Cancer, 177–202. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706782_0007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Fanconi Anemia Fanconi Anemia Fanconi Anemia DNA Repair DNA Damage Serine Phosphorylation"

1

Zhang, Pan, et Muriel W. Lambert. « Abstract 621 : XPF, a DNA interstrand crosslink (ICL) repair protein, localizes to telomeres after DNA ICL damage in normal but not Fanconi anemia cells. » Dans Proceedings : AACR 104th Annual Meeting 2013 ; Apr 6-10, 2013 ; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Fanconi Anemia Fanconi Anemia Fanconi Anemia DNA Repair DNA Damage Serine Phosphorylation"

1

Park, Woo-Hyun. BRCA1 Regulation of Fanconi Anemia Proteins in DNA Damage Repair. Fort Belvoir, VA : Defense Technical Information Center, mai 2005. http://dx.doi.org/10.21236/ada435068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Park, Woo-Hyun. BRCA1 Regulation of Fanconi Anemia Proteins in DNA Damage Repair. Fort Belvoir, VA : Defense Technical Information Center, mai 2006. http://dx.doi.org/10.21236/ada457705.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie