Littérature scientifique sur le sujet « FEM discretization »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « FEM discretization ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "FEM discretization"
Dryja, M., et M. Sarkis. « Additive Average Schwarz Methods for Discretization of Elliptic Problems with Highly Discontinuous Coefficients ». Computational Methods in Applied Mathematics 10, no 2 (2010) : 164–76. http://dx.doi.org/10.2478/cmam-2010-0009.
Texte intégralMartello, Giulia. « Discretization Analysis in FEM Models ». MATEC Web of Conferences 53 (2016) : 01063. http://dx.doi.org/10.1051/matecconf/20165301063.
Texte intégralLahtinen, Valtteri, et Antti Stenvall. « A category theoretical interpretation of discretization in Galerkin finite element method ». Mathematische Zeitschrift 296, no 3-4 (29 janvier 2020) : 1271–85. http://dx.doi.org/10.1007/s00209-020-02456-1.
Texte intégralMARAZZINA, DANIELE, OLEG REICHMANN et CHRISTOPH SCHWAB. « hp-DGFEM FOR KOLMOGOROV–FOKKER–PLANCK EQUATIONS OF MULTIVARIATE LÉVY PROCESSES ». Mathematical Models and Methods in Applied Sciences 22, no 01 (janvier 2012) : 1150005. http://dx.doi.org/10.1142/s0218202512005897.
Texte intégralOvchinnikov, George V., Denis Zorin et Ivan V. Oseledets. « Robust regularization of topology optimization problems with a posteriori error estimators ». Russian Journal of Numerical Analysis and Mathematical Modelling 34, no 1 (25 février 2019) : 57–69. http://dx.doi.org/10.1515/rnam-2019-0005.
Texte intégralSchedensack, Mira. « A New Generalization of the P1 Non-Conforming FEM to Higher Polynomial Degrees ». Computational Methods in Applied Mathematics 17, no 1 (1 janvier 2017) : 161–85. http://dx.doi.org/10.1515/cmam-2016-0031.
Texte intégralDevaud, Denis. « Petrov–Galerkin space-time hp-approximation of parabolic equations in H1/2 ». IMA Journal of Numerical Analysis 40, no 4 (16 octobre 2019) : 2717–45. http://dx.doi.org/10.1093/imanum/drz036.
Texte intégralYao, Lingyun, Wanyi Tian et Fei Wu. « An Optimized Generalized Integration Rules for Error Reduction of Acoustic Finite Element Model ». International Journal of Computational Methods 15, no 07 (12 octobre 2018) : 1850062. http://dx.doi.org/10.1142/s0219876218500627.
Texte intégralZhao, Jingjun, Jingyu Xiao et Yang Xu. « Stability and Convergence of an Effective Finite Element Method for Multiterm Fractional Partial Differential Equations ». Abstract and Applied Analysis 2013 (2013) : 1–10. http://dx.doi.org/10.1155/2013/857205.
Texte intégralXu, Haochen. « Analyzing heat transfer in Axial Flux Permanent Magnet electrical machines : A literature review on the discretization methods-FVM and FDM ». Theoretical and Natural Science 11, no 1 (17 novembre 2023) : 223–30. http://dx.doi.org/10.54254/2753-8818/11/20230412.
Texte intégralThèses sur le sujet "FEM discretization"
Rücker, Carsten. « Advanced Electrical Resistivity Modelling and Inversion using Unstructured Discretization ». Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-69066.
Texte intégralRückert, Jens. « Kirchhoff Plates and Large Deformations - Modelling and C^1-continuous Discretization ». Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-121275.
Texte intégralPonce, Cristobal. « Port-Hamiltonian modeling, discretization and shape control of multidimensional flexible mechanical systems ». Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD061.
Texte intégralThis thesis addresses the modeling, discretization, and shape control of flexible mechanical systems within the Port-Hamiltonian Systems (PHS) framework. The contributions are threefold. First, we propose generalized methodologies for modeling both linear and nonlinear multidimensional mechanical systems using the generalized extended Hamilton's principle, providing explicit and implicit PHS representations. Second, we develop structure-preserving discretization techniques via mixed Finite Element Methods (FEM), including two, three, and four-field approaches tailored to linear and nonlinear PHS and PH-DAE systems. Finally, we introduce a finite-dimensional controller based on low-order approximations of large-scale discretized linear PHS. This controller ensures convergence to the optimal shapes, offering the best approximation to the desired configurations, while guaranteeing asymptotic stability of the large-scale discretized system
He, Bo. « Compatible discretizations for Maxwell equations ». The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1143171299.
Texte intégralPalionytė, Agnė. « Kontinualių struktūrų diskretizavimas vaizdų algebros metodais ». Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110616_163839-19284.
Texte intégralIn the master thesis the problems of structure modeling, discretization-optimization and their solution methods and algorithms are analyzed. The original technique for optimization and discretization of beam structures has been suggested; The packages of image algebra methods and of the finite element methods were employed for that. Several packages of finite element method have been reviewed and the most suitable packages for the current problems were identified. The methods for obtaining skeletons of digital images were explored. The algorithms for optimization and discretization of beam structures has been suggested and coded. The program created consents of the part for image processing and input data preparing, and the part for image the finite element via method. The results obtained are represented and verified by STAAD.Pro package. During the discretization, the positions of structure nodes are obtained in the intersection of skeleton segments. The segments' cross-section areas are obtained in the middle-points between two adjacent nodes. The positions of nodes may be corrected if the nodes close to each other. The test-calculation, analysis of results and verification are presented and conclusions are drawn.
Bachini, Elena. « Numerical methods for Shallow Water Equations on regular surfaces ». Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422699.
Texte intégralGibert, Gaël. « Propagation de fissures en fatigue par une approche X-FEM avec raffinement automatique de maillage ». Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI088.
Texte intégralTo guarantee the high level of safety of industrial components under fatigue cycles it is essential to be able to predict the initiation and growth of cracks during their entire lifetime. However the numerical cost of a propagation simulation on engineer-sized problems with non-linear behavior may be prohibitive, with the classical techniques. Here, a new approach combining the eXtended Finite Element Method (X-FEM) and automatic Adaptive Mesh Refinement (AMR) is presented taking advantage of both methods. The X-FEM, developed over the past two decades by a large community, have proven its efficiency to handle evolving discontinuities in a variety of fracture analysis. Since this method enables to describe the crack and its propagation independently of the mesh of the structure, a simple hierarchical mesh refinement procedure can be applied. Automatic adaptive re-meshing is a valuable method for elastic-plastic crack propagation analysis since it permits a locally fine mesh and then an accurate description of physical quantities in a limited area around the crack front. This is particularly important when local fracture criteria are concerned. Moreover local refinement saves computational effort, particularly when the propagation path is not a priori known. In the present work, it is shown that both methods combine with minimal effort: the kinematic continuity relations and the field transfer process, needed for history-dependent material, must include in a proper way the enrichment of the model. If this requirement is not fulfilled, numerical error may be introduced. Implementation of this combined X-FEM/AMR approach in the finit elements code Cast3M is presented in detail. In particular, an innovative field transfer strategy is proposed in 2D and 3D. Numerical applications of crack propagation in elastic-plastic media demonstrate accuracy, robustness and efficiency of the technique. Moreover, an experimental study has been conducted on a example propagation with notable impact of confined plasticity. This study provides experimental data to compare with the numerical results obtained with the developed method. This validates our modelization choices. It also is the opportunity to test the developed method robustness on a realistic case of utilization. This study showed the interest of the proposed modelization taking into account plasticity induced crack closure during the fatigue propagation
Moreno, Navarro Pablo. « Multiphysics formulation and multiscale finite element discretizations of thermo-electro-magneto-mechanic coupling for smart materials design ». Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2525.
Texte intégralNumerical algorithms based on the Finite Element Method will be specialized for Analysis, Design, and Optimization of Sensors and Actuators (S-A) and their Application to Smart Structures. The S-A based on tangible assets can couple several fields, such as mechanical, electrical, magnetic, and thermal. They are used in many applications, particularly in smart structures, damage monitoring, or aerodynamics. Despite the considerable experience in these studies, the steps addressed are first to develop a thermodynamically consistent formulation for macro-scale to introduce plasticity models; second, to provide the tools to take into account the heterogeneities of multi-scale models for smart materials. The main objective is the development of a research computer code to simulate and study the performance, not only of the S-A themselves but also of the smart structures in which these S-A will be mounted
Lang, Rostislav. « Návrh a výpočet membránové konstrukce zastřešení stadionu ». Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226463.
Texte intégralBeckstein, Pascal. « Methodenentwicklung zur Simulation von Strömungen mit freier Oberfläche unter dem Einfluss elektromagnetischer Wechselfelder ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232474.
Texte intégralChapitres de livres sur le sujet "FEM discretization"
Schnack, E., I. Becker et N. Karaosmanoglu. « Three-dimensional Coupling of FEM and BEM in Elasticity ». Dans Discretization Methods in Structural Mechanics, 415–25. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-49373-7_39.
Texte intégralYagawa, G., T. Yamada et T. Furukawa. « Parallel Computing with Free Mesh Method : Virtually Meshless FEM ». Dans IUTAM Symposium on Discretization Methods in Structural Mechanics, 165–72. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4589-3_19.
Texte intégralCombescure, A., A. Gravouil, H. Maigre, J. Réthore et D. Grégoire. « 2D X-FEM Simulation of Dynamic Brittle Crack Propagation ». Dans IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 185–98. Dordrecht : Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_11.
Texte intégralPavlatos, G. D., et D. E. Beskos. « Dynamic Inelastic Soil-Structure Interaction using a Hybrid BEM/FEM Scheme ». Dans IUTAM Symposium on Discretization Methods in Structural Mechanics, 233–40. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4589-3_27.
Texte intégralMenouillard, T., N. Moës et A. Combescure. « An optimal explicit time stepping scheme for cracks modeled with X-FEM ». Dans IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 267–81. Dordrecht : Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_16.
Texte intégralBanichuk, N. V., et V. V. Saurin. « Some Aspects of Fem Application for Sensitivity Analysis of Quasi-Brittle Fracture Conditions ». Dans IUTAM Symposium on Discretization Methods in Structural Mechanics, 217–24. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4589-3_25.
Texte intégralGravouil, A., A. Combescure, T. Elguedj, E. Ferrié, J. Y. Buffière et W. Ludwig. « Application of X-FEM to 3D Real Cracks and Elastic-Plastic Fatigue Crack Growth ». Dans IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 213–31. Dordrecht : Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_13.
Texte intégralVentura, Giulio. « Single Domain Quadrature Techniques for Discontinuous and Non-Linear Enrichments in Local Partion of Unity FEM ». Dans IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 343–61. Dordrecht : Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_20.
Texte intégralDedner, Andreas, Robert Klöfkorn, Martin Nolte et Mario Ohlberger. « Dune-Fem : A General Purpose Discretization Toolbox for Parallel and Adaptive Scientific Computing ». Dans Advances in DUNE, 17–31. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28589-9_2.
Texte intégralDing, Jianxin, et Qingzhou Yang. « Superposed Element Method for the Temperature Field Simulation in Mass Concrete Structures Containing Cooling Pipes ». Dans Lecture Notes in Civil Engineering, 129–39. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4090-1_12.
Texte intégralActes de conférences sur le sujet "FEM discretization"
Aravinda Priyadrashini, K., et B. N. Rao. « Coupled Finite Element-Moving Least Squares Technique for Stochastic Structural Response of Cracked Structures ». Dans ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93756.
Texte intégralShivanna, Kiran H., Srinivas C. Tadepalli, Vincent A. Magnotta et Nicole M. Grosland. « A Framework for Finite Element Mesh Quality Improvement and Visualization in Orthopaedic Biomechanics ». Dans ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205622.
Texte intégralChen, Chang-New. « Extended GDQ and Related Discrete Element Analysis Methods for Transient Analyses of Continuum Mechanics Problems ». Dans ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1286.
Texte intégralChen, Chang-New. « Extended GDQ and Related Discrete Element Analysis Methods for Transient Offshore Mechanics and Engineering Problems ». Dans ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28484.
Texte intégralKondratyev, Nikolay V., Yuri G. Soloveichik, Denis V. Vagin et Ilya I. Patrushev. « GPU implementation of iterative solver for linear systems obtained by FEM discretization ». Dans 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2016. http://dx.doi.org/10.1109/apeie.2016.7806466.
Texte intégralKondratyev, Nikolay V., Yuri G. Soloveichik, Denis V. Vagin et Ilya I. Patrushev. « GPU implementation of iterative solver for linear systems obtained by FEM discretization ». Dans 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2016. http://dx.doi.org/10.1109/apeie.2016.7806929.
Texte intégralDennis, Brian H., et George S. Dulikravich. « Simultaneous Determination of Steady Temperatures and Heat Fluxes on Surfaces of Three Dimensional Objects Using FEM ». Dans ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24310.
Texte intégralDennis, Brian H., et George S. Dulikravich. « Simultaneous Determination of Temperatures, Heat Fluxes, Deformations, and Tractions on Inaccessible Boundaries ». Dans ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0215.
Texte intégralKondratyev, Nikolay v., Marina G. Persova, Yuri G. Soloveichik et Dmitry S. Kiselev. « Using HYB Sparse Matrix Storage Format for Solving Linear Systems Obtained by FEM Discretization on GPU ». Dans 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2018. http://dx.doi.org/10.1109/apeie.2018.8546266.
Texte intégralFatu, Aurelian, Mohamed Hajjam et Dominique Bonneau. « A New Model of Thermoelastohydrodynamic Lubrication in Dynamically Loaded Journal Bearings ». Dans World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63291.
Texte intégral