Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Fibroblast Growth Factor 2.

Articles de revues sur le sujet « Fibroblast Growth Factor 2 »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Fibroblast Growth Factor 2 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Nugent, Matthew A., et Renato V. Iozzo. « Fibroblast growth factor-2 ». International Journal of Biochemistry & ; Cell Biology 32, no 2 (février 2000) : 115–20. http://dx.doi.org/10.1016/s1357-2725(99)00123-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Okada-Ban, Mai, Jean Paul Thiery et Jacqueline Jouanneau. « Fibroblast growth factor-2 ». International Journal of Biochemistry & ; Cell Biology 32, no 3 (mars 2000) : 263–67. http://dx.doi.org/10.1016/s1357-2725(99)00133-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

EL-HARIRY, IMAN, MASSIMO PIGNATELLI et NICHOLAS LEMOINE. « FIBROBLAST GROWTH FACTOR 1 AND FIBROBLAST GROWTH FACTOR 2 IMMUNOREACTIVITY IN GASTROINTESTINAL TUMOURS ». Journal of Pathology 181, no 1 (janvier 1997) : 39–45. http://dx.doi.org/10.1002/(sici)1096-9896(199701)181:1<39 ::aid-path711>3.0.co;2-c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kardami, Elissavet, Karen Detillieux, Xin Ma, Zhisheng Jiang, Jon-Jon Santiago, Sarah K. Jimenez et Peter A. Cattini. « Fibroblast growth factor-2 and cardioprotection ». Heart Failure Reviews 12, no 3-4 (22 mai 2007) : 267–77. http://dx.doi.org/10.1007/s10741-007-9027-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wakulich, Candice, Linda Jackson-Boeters, Tom D. Daley et George P. Wysocki. « Immunohistochemical localization of growth factors fibroblast growth factor-1 and fibroblast growth factor-2 and receptors fibroblast growth factor receptor-2 and fibroblast growth factor receptor-3 in normal oral epithelium, epithelial dysplasias, and squamous cell carcinoma ». Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 93, no 5 (mai 2002) : 573–79. http://dx.doi.org/10.1067/moe.2002.124461.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Malot, Michel, Edith Browaeys-Poly, Franck Foumiertjt, Katia Cailliaul et Jean Pierre Vilain. « Ca2+Oscillations induced by fibroblast growth factor 2 inXenopusoocytes expressing fibroblast growth factor receptors ». Molecular Membrane Biology 14, no 4 (janvier 1997) : 205–10. http://dx.doi.org/10.3109/09687689709048183.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ridyard, Marc S., et Stephen M. Robbins. « Fibroblast Growth Factor-2-induced Signaling through Lipid Raft-associated Fibroblast Growth Factor Receptor Substrate 2 (FRS2) ». Journal of Biological Chemistry 278, no 16 (5 février 2003) : 13803–9. http://dx.doi.org/10.1074/jbc.m210245200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Taurustya, Hernita, Mae Sri Hartati Wahyuningsih et Indwiani Astuti. « Ethanolic Extract of Nerium indicum Mill. Decreases Transforming Growth Factor Beta-1 and Vascular Endothelial Growth Factor Expressions in Keloid Fibroblasts ». Open Access Macedonian Journal of Medical Sciences 8, A (15 avril 2020) : 297–301. http://dx.doi.org/10.3889/oamjms.2020.4292.

Texte intégral
Résumé :
BACKGROUND: Keloid is a benign fibroproliferative dermis tumor characterized by an increase in growth factors which induce fibroblast proliferation, excessive migration, and synthesis of collagen. Nerium indicum Mill. extract had been studied as a keloid therapy agent. 5α-oleandrin contained in N. indicum has antikeloid activity by inhibiting keloid fibroblast proliferation, fibroblast migration, collagen deposition, and transforming growth factor beta-1 (TGF-β1) synthesis. OBJECTIVE: This study aimed to determine the effect of administration of N. indicum extract on TGF-β1 and vascular endothelial growth factor (VEGF) expression in keloid fibroblast. METHODS: This research was a quasi-experimental research with a post-test only control group design. The research subjects were fibroblast cells passage IV-VII isolated from patients’ keloid tissue with explant techniques. Treatment groups received N. indicum extract with a serial concentration of 2 μg/ml, 1 μg/ml, and 0.5 μg/ml, and control group received medium only. The supernatant was obtained after 72 h incubation period. Examination of TGF-β1 and VEGF expressions was performed using ELISA procedure. RESULT: The expression of TGF-β1 in the treatment groups of the extract N. indicum (2 μg/ml, 1 μg/ml, and 0.5 μg/ml) was significantly lower than a control group of keloid fibroblasts (p < 0.05), according to increased concentration. VEGF expression in the treatment groups of N. indicum extract was lower compared to the control group of keloid fibroblasts. A significant decrease in keloid fibroblast VEGF levels occurred at extract concentrations of 2 μg/ml and 1 μg/ml (p < 0.05). CONCLUSION: N. indicum extract could decrease TGF-β1 and VEGF expressions compared to control medium in keloid fibroblast cultures.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bikfalvi, A. « Biological Roles of Fibroblast Growth Factor-2 ». Endocrine Reviews 18, no 1 (1 février 1997) : 26–45. http://dx.doi.org/10.1210/er.18.1.26.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bikfalvi, Andreas, Sharon Klein, Giuseppe Pintucci et Daniel B. Rifkin. « Biological Roles of Fibroblast Growth Factor-2* ». Endocrine Reviews 18, no 1 (1 février 1997) : 26–45. http://dx.doi.org/10.1210/edrv.18.1.0292.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Blanquaert, Frederic, Anne M. Delany et Ernesto Canalis. « Fibroblast Growth Factor-2 Induces Hepatocyte Growth Factor/Scatter Factor Expression in Osteoblasts* ». Endocrinology 140, no 3 (1 mars 1999) : 1069–74. http://dx.doi.org/10.1210/endo.140.3.6553.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Mao, Yang, Xiao Qiong Liu, Yu Song, Chun Gang Zhai, Xing Li Xu, Lei Zhang et Yun Zhang. « Fibroblast growth factor‐2/platelet‐derived growth factor enhances atherosclerotic plaque stability ». Journal of Cellular and Molecular Medicine 24, no 1 (janvier 2020) : 1128–40. http://dx.doi.org/10.1111/jcmm.14850.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Li, Y., C. Basilico et A. Mansukhani. « Cell transformation by fibroblast growth factors can be suppressed by truncated fibroblast growth factor receptors. » Molecular and Cellular Biology 14, no 11 (novembre 1994) : 7660–69. http://dx.doi.org/10.1128/mcb.14.11.7660.

Texte intégral
Résumé :
Ligand-induced dimerization and transphosphorylation are thought to be important events by which receptor tyrosine kinases generate cellular signals. We have investigated the ability of signalling-defective, truncated fibroblast growth factor (FGF) receptors (FGFR-1 and FGFR-2) to block the FGF response in cells that express both types of endogenous FGF receptors. When these dominant negative receptors are expressed in NIH 3T3 cells transformed by the secreted FGF-4, the transformed properties of the cells can be reverted to various degrees, with better reversion phenotype correlating with higher levels of truncated receptor expression. Furthermore, truncated FGFR-2 is significantly more efficient at producing reversion than FGFR-1, indicating that FGF-4 preferentially utilizes the FGFR-2 signalling pathway. NIH 3T3 clones expressing these truncated receptors are more resistant to FGF-induced mitogenesis and also exhibit reduced tyrosine phosphorylation upon treatment with FGF. The block in FGF-signalling, however, can be overcome by the addition of excess growth factor. The truncated receptors have binding affinities that are four- to eightfold lower than those of wild-type receptors, as measured by Scatchard analysis. We also observed a partial specificity in the responses of truncated-receptor-expressing clones to FGF-2 or FGF-4. Our results suggest that the block to signal transduction produced by kinase-negative FGF receptors is achieved through a combination of dominant negative effects and competition for growth factor binding with functional receptors.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Li, Y., C. Basilico et A. Mansukhani. « Cell transformation by fibroblast growth factors can be suppressed by truncated fibroblast growth factor receptors ». Molecular and Cellular Biology 14, no 11 (novembre 1994) : 7660–69. http://dx.doi.org/10.1128/mcb.14.11.7660-7669.1994.

Texte intégral
Résumé :
Ligand-induced dimerization and transphosphorylation are thought to be important events by which receptor tyrosine kinases generate cellular signals. We have investigated the ability of signalling-defective, truncated fibroblast growth factor (FGF) receptors (FGFR-1 and FGFR-2) to block the FGF response in cells that express both types of endogenous FGF receptors. When these dominant negative receptors are expressed in NIH 3T3 cells transformed by the secreted FGF-4, the transformed properties of the cells can be reverted to various degrees, with better reversion phenotype correlating with higher levels of truncated receptor expression. Furthermore, truncated FGFR-2 is significantly more efficient at producing reversion than FGFR-1, indicating that FGF-4 preferentially utilizes the FGFR-2 signalling pathway. NIH 3T3 clones expressing these truncated receptors are more resistant to FGF-induced mitogenesis and also exhibit reduced tyrosine phosphorylation upon treatment with FGF. The block in FGF-signalling, however, can be overcome by the addition of excess growth factor. The truncated receptors have binding affinities that are four- to eightfold lower than those of wild-type receptors, as measured by Scatchard analysis. We also observed a partial specificity in the responses of truncated-receptor-expressing clones to FGF-2 or FGF-4. Our results suggest that the block to signal transduction produced by kinase-negative FGF receptors is achieved through a combination of dominant negative effects and competition for growth factor binding with functional receptors.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Walters, J. D., R. J. Nakkula et P. Maney. « Modulation of Gingival Fibroblast Minocycline Accumulation by Biological Mediators ». Journal of Dental Research 84, no 4 (avril 2005) : 320–23. http://dx.doi.org/10.1177/154405910508400405.

Texte intégral
Résumé :
Gingival fibroblasts actively accumulate tetracyclines, thereby enhancing their redistribution from blood to gingiva. Since growth factors and pro-inflammatory cytokines regulate many fibroblast activities, they could potentially enhance fibroblast minocycline accumulation. To test this hypothesis, we treated gingival fibroblast monolayers for 1 or 6 hours with platelet-derived growth factor-BB (PDGF), fibroblast growth factor-2 (FGF), transforming growth factor-β1 (TGF), or tumor necrosis factor-α (TNF). Minocycline uptake was assayed at 37° by a fluorescence method. All 4 factors significantly enhanced minocycline uptake (P ≤ 0.008, ANOVA), primarily by increasing the affinity of transport. Treatment for 6 hours with 10 ng/mL FGF, PDGF, TGF, or TNF enhanced fibroblast minocycline uptake by 19% to 25%. Phorbol myristate acetate enhanced fibroblast minocycline uptake by 28%, suggesting that protein kinase C plays a role in up-regulating transport. These effects on transport provide a mechanism by which systemic tetracyclines could be preferentially distributed to gingival wound or inflammatory sites.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Salmaso, Natalina, et Flora M. Vaccarino. « Toward a Novel Endogenous Anxiolytic Factor, Fibroblast Growth Factor 2 ». Biological Psychiatry 69, no 6 (mars 2011) : 508–9. http://dx.doi.org/10.1016/j.biopsych.2011.01.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Li, Cheng-Ming, Jody Khosla, Ines Pagan, Paul Hoyle et Philip L. Sannes. « TGF-β1 and fibroblast growth factor-1 modify fibroblast growth factor-2 production in type II cells ». American Journal of Physiology-Lung Cellular and Molecular Physiology 279, no 6 (1 décembre 2000) : L1038—L1046. http://dx.doi.org/10.1152/ajplung.2000.279.6.l1038.

Texte intégral
Résumé :
Fibroblast growth factor (FGF)-2, which stimulates DNA synthesis by type II cells in the lung, has been shown to be regulated by transforming growth factor (TGF)-β1, an important inflammatory cytokine, in vascular epithelium. The goal of this study was to determine if FGF-2 production by alveolar type II cells is modulated by TGF-β1 or FGF-1, which also stimulates DNA synthesis by type II cells. Isolated rat type II cells were exposed to 0–40 ng/ml of TGF-β1 or 0–500 ng/ml of FGF-1 in serum-free medium for 1–5 days. With a specific immunoassay, significant increases of FGF-2 protein in type II cell lysates to levels above those in control cells were achieved after 1 day of exposure to 100 ng/ml of FGF-1 and after 3 days of treatment with 8 ng/ml of TGF-β1. Similarly, transcripts for FGF-2 were dramatically increased above those in control cells with TGF-β1 or FGF-1, as were those for FGF receptor-1. These results demonstrate important regulatory links between FGF-2 and both TGF-β1 and FGF-1 in the alveolar epithelium that could contribute to the regulation of normal cell turnover, development, and the repair processes after injury in the lung.
Styles APA, Harvard, Vancouver, ISO, etc.
18

RIBATTI, D., A. VACCA, M. RUSNATI et M. PRESTA. « The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies ». Cytokine & ; Growth Factor Reviews 18, no 3-4 (juin 2007) : 327–34. http://dx.doi.org/10.1016/j.cytogfr.2007.04.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

SUH, J., Y. KIM, J. PARK, J. SONN et W. KIM. « Expression of fibroblast growth factor receptor 3 by fibroblast growth factor 2 in cultured chick embryo chondrocytes ». Cell Biology International 29, no 3 (mars 2005) : 203–12. http://dx.doi.org/10.1016/j.cellbi.2004.09.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Virag, Jitka A. I., Marsha L. Rolle, Julia Reece, Sandrine Hardouin, Eric O. Feigl et Charles E. Murry. « Fibroblast Growth Factor-2 Regulates Myocardial Infarct Repair ». American Journal of Pathology 171, no 5 (novembre 2007) : 1431–40. http://dx.doi.org/10.2353/ajpath.2007.070003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Murakami, Shinya, Satoru Yamada, Takenori Nozaki et Masahiro Kitamura. « Fibroblast Growth Factor-2 Stimulates Periodontal Tissue Regeneration ». Clinical Advances in Periodontics 1, no 2 (août 2011) : 95–99. http://dx.doi.org/10.1902/cap.2011.110032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Boulle, N. « Adenosine diphosphate ribosylation of fibroblast growth factor-2 ». Molecular Endocrinology 9, no 6 (1 juin 1995) : 767–75. http://dx.doi.org/10.1210/me.9.6.767.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Guan, Ran, Xue-Long Sun, Sijian Hou, Peiyi Wu et Elliot L. Chaikof. « A Glycopolymer Chaperone for Fibroblast Growth Factor-2 ». Bioconjugate Chemistry 15, no 1 (janvier 2004) : 145–51. http://dx.doi.org/10.1021/bc034138t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Zhou, Ming, Roy L. Sutliff, Richard J. Paul, John N. Lorenz, James B. Hoying, Christian C. Haudenschild, Moying Yin et al. « Fibroblast growth factor 2 control of vascular tone ». Nature Medicine 4, no 2 (février 1998) : 201–7. http://dx.doi.org/10.1038/nm0298-201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Taverna, Simona, Salvatrice Rigogliuso, Monica Salamone et Maria Letizia Vittorelli. « Intracellular trafficking of endogenous fibroblast growth factor-2 ». FEBS Journal 275, no 7 (25 février 2008) : 1579–92. http://dx.doi.org/10.1111/j.1742-4658.2008.06316.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Malcolm, Sue, et William Reardon. « Fibroblast Growth Factor Receptor-2 Mutations in Craniosynostosisa ». Annals of the New York Academy of Sciences 785, no 1 (juin 1996) : 164–70. http://dx.doi.org/10.1111/j.1749-6632.1996.tb56255.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Boulle, N., E. M. Jones, P. Auguste et A. Baird. « Adenosine diphosphate ribosylation of fibroblast growth factor-2. » Molecular Endocrinology 9, no 6 (juin 1995) : 767–75. http://dx.doi.org/10.1210/mend.9.6.8592522.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

KARDAMI, E. « Fibroblast growth factor 2 isoforms and cardiac hypertrophy ». Cardiovascular Research 63, no 3 (août 2004) : 458–66. http://dx.doi.org/10.1016/j.cardiores.2004.04.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Mancilla, Edna E., Francesco De Luca, Jennifer A. Uyeda, Frank S. Czerwiec et Jeffrey Baron. « Effects of Fibroblast Growth Factor-2 on Longitudinal Bone Growth* ». Endocrinology 139, no 6 (1 juin 1998) : 2900–2904. http://dx.doi.org/10.1210/endo.139.6.6032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Thompson, Stuart D., Jayne A. Franklyn, John C. Watkinson, Julie M. Verhaeg, Michael C. Sheppard et Margaret C. Eggo. « Fibroblast Growth Factors 1 and 2 and Fibroblast Growth Factor Receptor 1 Are Elevated in Thyroid Hyperplasia ». Journal of Clinical Endocrinology & ; Metabolism 83, no 4 (1 avril 1998) : 1336–41. http://dx.doi.org/10.1210/jcem.83.4.4723.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Sobue, T., T. Gravely, A. Hand, Y. K. Min, C. Pilbeam, L. G. Raisz, X. Zhang, D. Larocca, R. Florkiewicz et M. M. Hurley. « Regulation of Fibroblast Growth Factor 2 and Fibroblast Growth Factor Receptors by Transforming Growth Factor β in Human Osteoblastic MG-63 Cells ». Journal of Bone and Mineral Research 17, no 3 (1 mars 2002) : 502–12. http://dx.doi.org/10.1359/jbmr.2002.17.3.502.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lou, Z.-C., Z.-H. Lou et J. Xiao. « Regeneration of the tympanic membrane using fibroblast growth factor-2 ». Journal of Laryngology & ; Otology 132, no 06 (juin 2018) : 470–78. http://dx.doi.org/10.1017/s002221511800083x.

Texte intégral
Résumé :
AbstractObjectiveA systematic review was conducted to investigate the effectiveness of fibroblast growth factor-2 on the regeneration of tympanic membrane perforation.MethodsThe PubMed database was searched for relevant studies. Experimental studies, human randomised controlled trials, prospective single-arm studies and retrospective studies reporting acute and chronic tympanic membrane perforations in relation to two healing outcomes (success rate and closure time), were selected.ResultsAll 11 clinical studies investigating the effect of fibroblast growth factor-2 on traumatic tympanic membrane perforations in humans reported a success rate of 89.3–100 per cent, with a closure time of around 2 weeks. Three studies of fibroblast growth factor-2 combined with Gelfoam showed that the success rate of chronic tympanic membrane perforation was 83–98.1 per cent in the fibroblast growth factor-2 group, but 10 per cent in the gelatine sponge groups.ConclusionFibroblast growth factor-2 with or without biological material patching promotes regeneration in cases of acute and chronic tympanic membrane perforation, and is safe and efficient. However, the best dosage, application time and administration pathway of fibroblast growth factor-2 are still to be elucidated.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Skibinski, Grzegorz, J. Stuart Elborn et Madeleine Ennis. « Bronchial epithelial cell growth regulation in fibroblast cocultures : the role of hepatocyte growth factor ». American Journal of Physiology-Lung Cellular and Molecular Physiology 293, no 1 (juillet 2007) : L69—L76. http://dx.doi.org/10.1152/ajplung.00299.2006.

Texte intégral
Résumé :
Proliferation of bronchial epithelial cells is an important biological process in physiological conditions and various lung diseases. The objective of this study was to determine how bronchial fibroblasts influence bronchial epithelial cell proliferation. The proliferative activity in cocultures was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and direct cells counts. Concentration of cytokines was measured in cell culture supernatants by means of ELISA. In primary cell cocultures, fibroblasts or fibroblast-conditioned medium enhanced 1.85-fold the proliferation of primary bronchial epithelial cells ( P < 0.02) compared with bronchial epithelial cells cultured alone. The proliferative activity in cocultures and in fibroblast-conditioned medium was reduced by neutralizing antibody to hepatocyte growth factor (HGF) and HGF receptor c-met. Neutralizing antibodies to FGF-7 and IGF-1 had no effect. Treatment of fibroblast-epithelial cocultures with anti-IL-6 and anti-TNF-α neutralizing antibodies and with indomethacin decreased production of HGF. These results indicate that cytokines and PGE2may indirectly mediate epithelial cell proliferation via the regulation of HGF in bronchial stromal cells and that HGF plays a crucial role in proinflammatory cytokine-induced proliferation in the experimental system studied.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Wang, Huiming, Toshihiko Toida, Yeong Shik Kim, Ishan Capila, Ronald E. Hileman, Merton Bernfield et Robert J. Linhardt. « Glycosaminoglycans Can Influence Fibroblast Growth Factor-2 Mitogenicity without Significant Growth Factor Binding ». Biochemical and Biophysical Research Communications 235, no 2 (juin 1997) : 369–73. http://dx.doi.org/10.1006/bbrc.1997.6789.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wang, Huiming, Toshihiko Toida, Yeong Shik Kim, Isham Capila, Ronald E. Hileman, Merton Bernfield et Robert J. Linhardt. « Glycosaminoglycans Can Influence Fibroblast Growth Factor-2 Mitogenicity without Significant Growth Factor Binding ». Biochemical and Biophysical Research Communications 242, no 1 (janvier 1998) : 248. http://dx.doi.org/10.1006/bbrc.1997.7864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Göke, Michael, Michiyuki Kanai et Daniel K. Podolsky. « Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor ». American Journal of Physiology-Gastrointestinal and Liver Physiology 274, no 5 (1 mai 1998) : G809—G818. http://dx.doi.org/10.1152/ajpgi.1998.274.5.g809.

Texte intégral
Résumé :
Although the presence of subepithelial intestinal fibroblasts has been well recognized, the effects of fibroblasts on intestinal epithelial cell (IEC) growth are incompletely understood. In vitro studies were undertaken to evaluate the effects of fibroblasts on the proliferation of model IEC lines. IECs (Caco-2, T84, and IEC-6) were grown alone or in the presence of human intestinal (CCD-18), lung (CCD-37), or skin explant-derived fibroblasts. Cocultures were carried out directly on irradiated fibroblasts or by Transwell coculture technique with fibroblasts and epithelial cells separated by a porous filter. Cell proliferation was assessed by [3H]thymidine incorporation and cell counts. Hepatocyte growth factor (HGF) and c- met transcript expression in IECs and fibroblasts was examined by RT-PCR and Northern blotting; protein expression was evaluated by immunoblotting. Intestinal as well as lung and skin fibroblasts substantially stimulated proliferation of Caco-2, T84, and IEC-6 cells in both direct and Transwell cocultures. In addition, fibroblast-conditioned medium stimulated IEC proliferation, suggesting a paracrine mechanism. Anti-human HGF-neutralizing antibodies blocked the growth-promoting effects in both fibroblasts and fibroblast-conditioned medium. Recombinant human HGF dose dependently promoted IEC proliferation. HGF mRNA and protein expression was restricted to fibroblasts. High levels of c- met expression were found in Caco-2 and T84 cells; in contrast, expression in fibroblasts was weak. In summary, fibroblasts stimulate IEC proliferation through a paracrine mechanism mediated predominantly by HGF.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Bras, S. L., F. Miralles, A. Basmaciogullari, P. Czernichow et R. Scharfmann. « Fibroblast Growth Factor 2 Promotes Pancreatic Epithelial Cell Proliferation Via Functional Fibroblast Growth Factor Receptors During Embryonic Life ». Diabetes 47, no 8 (1 août 1998) : 1236–42. http://dx.doi.org/10.2337/diab.47.8.1236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Le Bras, S., F. Miralles, A. Basmaciogullari, P. Czernichow et R. Scharfmann. « Fibroblast growth factor 2 promotes pancreatic epithelial cell proliferation via functional fibroblast growth factor receptors during embryonic life ». Diabetes 47, no 8 (1 août 1998) : 1236–42. http://dx.doi.org/10.2337/diabetes.47.8.1236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Schultz, Victor, Mathew Suflita, Xinyue Liu, Xing Zhang, Yanlei Yu, Lingyun Li, Dixy E. Green et al. « Heparan Sulfate Domains Required for Fibroblast Growth Factor 1 and 2 Signaling through Fibroblast Growth Factor Receptor 1c ». Journal of Biological Chemistry 292, no 6 (28 décembre 2016) : 2495–509. http://dx.doi.org/10.1074/jbc.m116.761585.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Werner, Sandra, Klaus Unsicker et Oliver von Bohlen und Halbach. « Fibroblast growth factor-2 deficiency causes defects in adult hippocampal neurogenesis, which are not rescued by exogenous fibroblast growth factor-2 ». Journal of Neuroscience Research 89, no 10 (28 juillet 2011) : 1605–17. http://dx.doi.org/10.1002/jnr.22680.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Czyz, Malgorzata. « Fibroblast Growth Factor Receptor Signaling in Skin Cancers ». Cells 8, no 6 (4 juin 2019) : 540. http://dx.doi.org/10.3390/cells8060540.

Texte intégral
Résumé :
Fibroblast growth factor (FGF)/Fibroblast growth factor receptor (FGFR) signaling regulates various cellular processes during the embryonic development and in the adult organism. In the skin, fibroblasts and keratinocytes control proliferation and survival of melanocytes in a paracrine manner via several signaling molecules, including FGFs. FGF/FGFR signaling contributes to the skin surface expansion in childhood or during wound healing, and skin protection from UV light damage. Aberrant FGF/FGFR signaling has been implicated in many disorders, including cancer. In melanoma cells, the FGFR expression is low, probably because of the strong endogenous mutation-driven constitutive activation of the downstream mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signaling pathway. FGFR1 is exceptional as it is expressed in the majority of melanomas at a high level. Melanoma cells that acquired the capacity to synthesize FGFs can influence the neighboring cells in the tumor niche, such as endothelial cells, fibroblasts, or other melanoma cells. In this way, FGF/FGFR signaling contributes to intratumoral angiogenesis, melanoma cell survival, and development of resistance to therapeutics. Therefore, inhibitors of aberrant FGF/FGFR signaling are considered as drugs in combination treatment. The ongoing LOGIC-2 phase II clinical trial aims to find out whether targeting the FGF/FGFR signaling pathway with BGJ398 may be a good therapeutic strategy in melanoma patients who develop resistance to v-Raf murine sarcoma viral oncogene homolog B (BRAF)/MEK inhibitors.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Armstrong, Lucas C., Benny Björkblom, Kurt D. Hankenson, Anthony W. Siadak, Charlotte E. Stiles et Paul Bornstein. « Thrombospondin 2 Inhibits Microvascular Endothelial Cell Proliferation by a Caspase-independent Mechanism ». Molecular Biology of the Cell 13, no 6 (juin 2002) : 1893–905. http://dx.doi.org/10.1091/mbc.e01-09-0066.

Texte intégral
Résumé :
The matricellular protein thrombospondin 2 (TSP2) regulates a variety of cell–matrix interactions. A prominent feature of TSP2-null mice is increased microvascular density, particularly in connective tissues synthesized after injury. We investigated the cellular basis for the regulation of angiogenesis by TSP2 in cultures of murine and human fibroblasts and endothelial cells. Fibroblasts isolated from murine and human dermis synthesize TSP2 mRNA and secrete significant amounts of immunoreactive TSP2, whereas endothelial cells from mouse lung and human dermis did not synthesize TSP2 mRNA or protein. Recombinant mouse TSP2 inhibited growth of human microvascular endothelial cells (HMVECs) mediated by basic fibroblast growth factor, insulin-like growth factor-1, epidermal growth factor, and vascular endothelial growth factor (VEGF). HMVECs exposed to TSP2 in the presence of these growth factors had a decreased proportion of cells in S and G2/M phases. HMVECs cultured with a combination of basic fibroblast growth factor, insulin-like growth factor-1, and epidermal growth factor displayed an increased proportion of nonviable cells in the presence of TSP2, but the addition of VEGF blocked this TSP2-mediated impairment of cell viability. TSP2-mediated inhibition of DNA synthesis by HMVECs in the presence of VEGF was not affected by the broad-spectrum caspase inhibitor zVAD-fmk. Similar findings were obtained with TSP1. Taken together, these observations indicate that either TSP2 or TSP1 can inhibit HMVEC proliferation by inhibition of cell cycle progression and induction of cell death, but the mechanisms responsible for TSP2-mediated inhibition of cell cycle progression are independent from those leading to cell death.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Gringel, Susanne, Jeroen van Bergeijk, Kirsten Haastert, Claudia Grothe et Peter Claus. « Nuclear fibroblast growth factor-2 interacts specifically with splicing factor SF3a66 ». Biological Chemistry 385, no 12 (1 décembre 2004) : 1203–8. http://dx.doi.org/10.1515/bc.2004.156.

Texte intégral
Résumé :
Abstract Fibroblast growth factor 2 (FGF-2) has a dual role as a classical extracellular signaling protein and as an intracellular factor. Isoforms of FGF-2, resulting from alternatively used start codons on one mRNA species, locate differentially to nuclear compartments. In this study we aimed to analyze functions of intracellular FGF-2 by identification of interacting proteins. We identified the 66-kDa subunit of splicing factor 3a (SF3a66) as a binding partner in a yeast two-hybrid screen and confirmed this interaction by pull-down assays. The splicing factor interacted with the 18-kDa (FGF-218) and with the 23-kDa (FGF-223) isoforms, indicating an interaction with a domain common to both isoforms. Moreover, FGF-2 interacted with the C-terminus of SF3a66, a sequence that has not previously been assigned a functional role. In a functional neurite outgrowth assay, SF3a66 enhanced neurite lengths similar to FGF-218. We have previously identified the spliceosomal assembly factor survival of motoneuron (SMN) protein as a protein interacting specifically with the FGF-223 isoform [Claus et al., J. Biol. Chem. 278 (2003), 479–485]. The identification of two FGF-2 interacting proteins from the same biochemical pathway suggests a novel intranuclear role of FGF-2.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Mikheeva, E. G., A. M. Aukhadieva, A. G. Sabirov et S. V. Boichuk. « Low-molecular-weight fibroblast growth factor-2 — a viable prognostic factor for gastric gastrointestinal stromal tumors ». Kazan medical journal 102, no 3 (10 juin 2021) : 313–21. http://dx.doi.org/10.17816/kmj2021-313.

Texte intégral
Résumé :
Aim. To examine the expression of fibroblast growth factor-2 and its isoforms in gastrointestinal stromal tumors and assess the prognostic value of this marker. Methods. The study included 44 patients with gastric gastrointestinal stromal tumors of the stomach who were prescribed surgical or combined treatment with the targeted drug imatinib (imatinib mesylate). Immunohistochemistry (IHC)-staining and immunoblotting with monoclonal antibodies were used to assess the expression of FGF-2. Statistical analysis for differences in clinical and morphological parameters was performed by using Students, MannWhitneyWilcoxon and Fishers tests. Differences were considered significant at p 0.05. Results. Fibroblast growth factor-2 expression was assessed in tumor tissues in 39 out of 44 analyzed patients. The frequency of fibroblast growth factor-2 expression in the observed patients was 84.6% (33/39). The moderate and strong fibroblast growth factor-2 expression was detected in 21 (53.8%) patients with gastric gastrointestinal stromal tumors. High expression of low-molecular weight (18 kDa) fibroblast growth factor-2 isoform was found in all tumor samples from patients with high-risk gastrointestinal stromal tumor (prognostic group 6) (p=0.039), which indicated the active secretion of this ligand by its signalling pathway in the cancer cells. Patients with high levels of low‐molecular‐weight fibroblast growth factor-2 showed a higher level of Ki-67 proliferative activity (р=0.013) and tumor size (р=0.0017). Patients with increased expression of the low molecular weight isoform of fibroblast growth factor-2 in gastric gastrointestinal stromal tumor had a higher risk of recurrence, as well as larger tumor size and proliferative activity compared with patients without expression of this isoform. The level of fibroblast growth factor-2 expression in tumor samples, determined by immunohistochemistry-staining, increases after initiation of imatinib to based therapy, which may indicate the formation of resistance to this targeted drug and the progression of the disease. Conclusion. The results of the study suggest that FGF-2 might be an independent prognostic marker of gastric gastrointestinal stromal tumor and a viable therapeutic target.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Passos-Bueno, M. R., W. R. Wilcox, E. W. Jabs, A. L. Serti�, L. G. Alonso et H. Kitoh. « Clinical spectrum of fibroblast growth factor receptor mutations ». Human Mutation 14, no 2 (1999) : 115–25. http://dx.doi.org/10.1002/(sici)1098-1004(1999)14:2<115 ::aid-humu3>3.0.co;2-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhao, Tieqiang, Wenyuan Zhao, Yuanjian Chen, Victoria S. Li, Weixin Meng et Yao Sun. « Platelet-derived growth factor-D promotes fibrogenesis of cardiac fibroblasts ». American Journal of Physiology-Heart and Circulatory Physiology 304, no 12 (15 juin 2013) : H1719—H1726. http://dx.doi.org/10.1152/ajpheart.00130.2013.

Texte intégral
Résumé :
Platelet-derived growth factor (PDGF)-D is a newly recognized member of the PDGF family with its role just now being understood. Our previous study shows that PDGF-D and its receptors (PDGFR-β) are significantly increased in the infarcted heart, where PDGFR-β is primarily expressed by fibroblasts, indicating the involvement of PDGF-D in the development of cardiac fibrosis. In continuing with these findings, the current study explored the molecular basis of PDGF-D on fibrogenesis. Rat cardiac fibroblasts were isolated and treated with PDGF-D (200 ng/ml medium). The potential regulation of PDGF-D on fibroblast growth, phenotype change, collagen turnover, and the transforming growth factor (TGF)-β pathway were explored. We found: 1) PDGF-D significantly elevated cardiac fibroblast proliferation, myofibroblast (myoFb) differentiation, and type I collagen secretion; 2) matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9 protein levels were significantly elevated in PDGF-D-treated cells, which were coincident with increased expressions of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2; 3) PDGF-D significantly enhanced TGF-β1 synthesis, which was eliminated by TGF-β blockade with small-interfering RNA (siRNA); 4) the stimulatory role of PDGF-D on fibroblast proliferation and collagen synthesis was abolished by TGF-β blockade; and 5) TGF-β siRNA treatment significantly suppressed PDGF-D synthesis in fibroblasts. These observations indicate that PDGF-D promotes fibrogenesis through multiple mechanisms. Coelevations of TIMPs and MMPs counterbalance collagen degradation. The profibrogenic role of PDGF-D is mediated through activation of the TGF-β1 pathway. TGF-β1 exerts positive feedback on PDGF-D synthesis. These findings suggest the potential therapeutic effect of PDGFR blockade on interstitial fibrosis in the infarcted heart.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Ron, D., R. Reich, M. Chedid, C. Lengel, O. E. Cohen, A. M. Chan, G. Neufeld, T. Miki et S. R. Tronick. « Fibroblast growth factor receptor 4 is a high affinity receptor for both acidic and basic fibroblast growth factor but not for keratinocyte growth factor. » Journal of Biological Chemistry 268, no 8 (mars 1993) : 5388–94. http://dx.doi.org/10.1016/s0021-9258(18)53334-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Sugg, Kristoffer B., James F. Markworth, Nathaniel P. Disser, Andrew M. Rizzi, Jeffrey R. Talarek, Dylan C. Sarver, Susan V. Brooks et Christopher L. Mendias. « Postnatal tendon growth and remodeling require platelet-derived growth factor receptor signaling ». American Journal of Physiology-Cell Physiology 314, no 4 (1 avril 2018) : C389—C403. http://dx.doi.org/10.1152/ajpcell.00258.2017.

Texte intégral
Résumé :
Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the fundamental biological activities of many cells that compose musculoskeletal tissues. However, little is known about the role of PDGFR signaling during tendon growth and remodeling in adult animals. Using the hindlimb synergist ablation model of tendon growth, our objectives were to determine the role of PDGFR signaling in the adaptation of tendons subjected to a mechanical growth stimulus, as well as to investigate the biological mechanisms behind this response. We demonstrate that both PDGFRs, PDGFRα and PDGFRβ, are expressed in tendon fibroblasts and that the inhibition of PDGFR signaling suppresses the normal growth of tendon tissue in response to mechanical growth cues due to defects in fibroblast proliferation and migration. We also identify membrane type-1 matrix metalloproteinase (MT1-MMP) as an essential proteinase for the migration of tendon fibroblasts through their extracellular matrix. Furthermore, we report that MT1-MMP translation is regulated by phosphoinositide 3-kinase/Akt signaling, while ERK1/2 controls posttranslational trafficking of MT1-MMP to the plasma membrane of tendon fibroblasts. Taken together, these findings demonstrate that PDGFR signaling is necessary for postnatal tendon growth and remodeling and that MT1-MMP is a critical mediator of tendon fibroblast migration and a potential target for the treatment of tendon injuries and diseases.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Lei, Haipeng, et Chu-Xia Deng. « Fibroblast Growth Factor Receptor 2 Signaling in Breast Cancer ». International Journal of Biological Sciences 13, no 9 (2017) : 1163–71. http://dx.doi.org/10.7150/ijbs.20792.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Fei, Yurong, Gloria Gronowicz et Marja M. Hurley. « Fibroblast Growth Factor-2, Bone Homeostasis and Fracture Repair ». Current Pharmaceutical Design 19, no 19 (1 avril 2013) : 3354–63. http://dx.doi.org/10.2174/1381612811319190002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie