Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Finite differences.

Articles de revues sur le sujet « Finite differences »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Finite differences ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Adam, David. "Finite differences in finite characteristic." Journal of Algebra 296, no. 1 (2006): 285–300. http://dx.doi.org/10.1016/j.jalgebra.2005.05.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kumar, Anand. "Isotropic finite-differences." Journal of Computational Physics 201, no. 1 (2004): 109–18. http://dx.doi.org/10.1016/j.jcp.2004.05.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Thomée, Vidar. "From finite differences to finite elements." Journal of Computational and Applied Mathematics 128, no. 1-2 (2001): 1–54. http://dx.doi.org/10.1016/s0377-0427(00)00507-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jones, Michael A. "A Difference Equation Approach to Finite Differences of Polynomials." College Mathematics Journal 51, no. 5 (2020): 375–77. http://dx.doi.org/10.1080/07468342.2020.1760065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wehrse, R. "Radiative Transfer with Finite Differences and Finite Elements." EAS Publications Series 28 (2008): 129–34. http://dx.doi.org/10.1051/eas:0828018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Carpenter, Mark H., and John Otto. "High-Order "Cyclo-Difference" Techniques: An Alternative to Finite Differences." Journal of Computational Physics 118, no. 2 (1995): 242–60. http://dx.doi.org/10.1006/jcph.1995.1096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Stern, M. D., and Gordon Reece. "Microcomputer Modelling by Finite Differences." Mathematical Gazette 71, no. 458 (1987): 332. http://dx.doi.org/10.2307/3617088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rhoads, Kathryn, and James A. Mendoza Alvarez. "Data Modeling Using Finite Differences." Mathematics Teacher 110, no. 9 (2017): 709–13. http://dx.doi.org/10.5951/mathteacher.110.9.0709.

Texte intégral
Résumé :
The Common Core State Standards for Mathematics (CCSSM) states that high school students should be able to recognize patterns of growth in linear, quadratic, and exponential functions and construct such functions from tables of data (CCSSI 2010). Accordingly, many high school curricula include a method that uses finite differences between data points to generate polynomial functions. That is, students may examine differences between successive output values (called first differences), successive differences of the first differences (second differences), or successive differences of the (n - 1)
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chen, E. Jack. "Derivative Estimation with Finite Differences." SIMULATION 79, no. 10 (2003): 598–609. http://dx.doi.org/10.1177/0037549703039951.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wenchang, Chu. "Finite differences and determinant identities." Linear Algebra and its Applications 430, no. 1 (2009): 215–28. http://dx.doi.org/10.1016/j.laa.2007.08.044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Magnier, Sophie‐Adélade, Peter Mora, and Albert Tarantola. "Finite differences on minimal grids." GEOPHYSICS 59, no. 9 (1994): 1435–43. http://dx.doi.org/10.1190/1.1443700.

Texte intégral
Résumé :
Conventional approximations to space derivatives by finite differences use orthogonal grids. To compute second‐order space derivatives in a given direction, two points are used. Thus, 2N points are required in a space of dimension N; however, a centered finite‐difference approximation to a second‐order derivative may be obtained using only three points in 2-D (the vertices of a triangle), four points in 3-D (the vertices of a tetrahedron), and in general, N + 1 points in a space of dimension N. A grid using N + 1 points to compute derivatives is called minimal. The use of minimal grids does no
Styles APA, Harvard, Vancouver, ISO, etc.
12

Spivey, Michael Z. "Combinatorial sums and finite differences." Discrete Mathematics 307, no. 24 (2007): 3130–46. http://dx.doi.org/10.1016/j.disc.2007.03.052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Brighi, Bernard, Michel Chipot, and Erich Gut. "Finite differences on triangular grids." Numerical Methods for Partial Differential Equations 14, no. 5 (1998): 567–79. http://dx.doi.org/10.1002/(sici)1098-2426(199809)14:5<567::aid-num2>3.0.co;2-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Jerome, John Soundar. "Identities arising from finite differences." Resonance 9, no. 11 (2004): 68–71. http://dx.doi.org/10.1007/bf02834974.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Iserles, A. "Order Stars, Approximations and Finite Differences. III Finite Differences for $u_t = \omega u_{xx} $." SIAM Journal on Mathematical Analysis 16, no. 5 (1985): 1020–33. http://dx.doi.org/10.1137/0516076.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

O'Leary, D. P. "Finite Differences and Finite Elements: Getting to Know You." Computing in Science and Engineering 7, no. 3 (2005): 72–79. http://dx.doi.org/10.1109/mcse.2005.49.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Yano, H., A. Kieda, and K. Nishioka. "A combined scheme of finite elements and finite differences." Journal of the Franklin Institute 326, no. 1 (1989): 131–37. http://dx.doi.org/10.1016/0016-0032(89)90065-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kawada, Naoki, Takeshi Yoda, Norio Tagawa, Takao Tsuchiya, and Kan Okubo. "Evaluation of Acoustic Simulation Using Wave Equation Finite Difference Time Domain Method with Compact Finite Differences." Japanese Journal of Applied Physics 51, no. 7S (2012): 07GG06. http://dx.doi.org/10.7567/jjap.51.07gg06.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Kawada, Naoki, Takeshi Yoda, Norio Tagawa, Takao Tsuchiya, and Kan Okubo. "Evaluation of Acoustic Simulation Using Wave Equation Finite Difference Time Domain Method with Compact Finite Differences." Japanese Journal of Applied Physics 51 (July 20, 2012): 07GG06. http://dx.doi.org/10.1143/jjap.51.07gg06.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Selmin, V. "The node-centred finite volume approach: Bridge between finite differences and finite elements." Computer Methods in Applied Mechanics and Engineering 102, no. 1 (1993): 107–38. http://dx.doi.org/10.1016/0045-7825(93)90143-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Bossavit, A. "'Generalized Finite Differences' in Computational Electromagnetics." Progress In Electromagnetics Research 32 (2001): 45–64. http://dx.doi.org/10.2528/pier00080102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Chu, W. "Finite Differences and Terminating Hypergeometric Series." Irish Mathematical Society Bulletin 0078 (2016): 31–45. http://dx.doi.org/10.33232/bims.0078.31.45.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Levant, Arie. "Finite Differences in Homogeneous Discontinuous Control." IEEE Transactions on Automatic Control 52, no. 7 (2007): 1208–17. http://dx.doi.org/10.1109/tac.2007.900825.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Seaton, K. A., and J. Armstrong. "Polynomial cancellation coding and finite differences." IEEE Transactions on Information Theory 46, no. 1 (2000): 311–13. http://dx.doi.org/10.1109/18.817533.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Gyarmati, Katalin, François Hennecart, and Imre Z. Ruzsa. "Sums and differences of finite sets." Functiones et Approximatio Commentarii Mathematici 37, no. 1 (2007): 175–86. http://dx.doi.org/10.7169/facm/1229618749.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Monserrat, Bartomeu. "Electron–phonon coupling from finite differences." Journal of Physics: Condensed Matter 30, no. 8 (2018): 083001. http://dx.doi.org/10.1088/1361-648x/aaa737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Brezzi, Franco, Annalisa Buffa, and Konstantin Lipnikov. "Mimetic finite differences for elliptic problems." ESAIM: Mathematical Modelling and Numerical Analysis 43, no. 2 (2008): 277–95. http://dx.doi.org/10.1051/m2an:2008046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Marcone, Alberto, Franco Parlamento, and Alberto Policriti. "Finite families with few symmetric differences." Proceedings of the American Mathematical Society 127, no. 3 (1999): 835–45. http://dx.doi.org/10.1090/s0002-9939-99-04751-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Adam, David, and Youssef Fares. "Integer-valued Euler–Jackson’s finite differences." Monatshefte für Mathematik 161, no. 1 (2009): 15–32. http://dx.doi.org/10.1007/s00605-009-0111-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ballantine, Cristina, and Mircea Merca. "Finite differences of Euler's zeta function." Miskolc Mathematical Notes 18, no. 2 (2017): 639. http://dx.doi.org/10.18514/mmn.2017.2256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Allen, Paul T. "Boundary Value Problems and Finite Differences." College Mathematics Journal 47, no. 1 (2016): 34–41. http://dx.doi.org/10.4169/college.math.j.47.1.34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Leitão, V. M. A. "Generalized finite differences using fundamental solutions." International Journal for Numerical Methods in Engineering 81, no. 5 (2009): 564–83. http://dx.doi.org/10.1002/nme.2697.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Li, Brandon. "2D Microwave Simulation Using Finite Differences." Cornell Undergraduate Research Journal 1, no. 1 (2022): 74–83. http://dx.doi.org/10.37513/curj.v1i1.659.

Texte intégral
Résumé :
We derive a finite difference scheme to numerically simulate the propagation of microwaves in a 2D domain with reflective obstacles. An analysis of the consistency and stability of this method is performed, leading to a rigorous justification of its convergence. Following this, we discuss the boundary conditions and derive the mathematical form for energy flux. Finally, the numerical approximation is compared against prior experimental results. The simulation was found to have been able to predict the distribution of interference maxima and minima with some accuracy, but it was seen to be less
Styles APA, Harvard, Vancouver, ISO, etc.
34

Song, Xiaolei, Sergey Fomel, and Lexing Ying. "Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation." Geophysical Journal International 193, no. 2 (2013): 960–69. http://dx.doi.org/10.1093/gji/ggt017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Boyd, John P. "Sum-accelerated pseudospectral methods: Finite differences and sech-weighted differences." Computer Methods in Applied Mechanics and Engineering 116, no. 1-4 (1994): 1–11. http://dx.doi.org/10.1016/s0045-7825(94)80003-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ochilov, Sherali Baratovich, Gulrukh Djumanazarovna Khasanova, and Oisha Kurbanovna Khudayberdieva. "Method For Constructing Correlation Dependences For Functions Of Many Variables Used Finite Differences." American Journal of Management and Economics Innovations 03, no. 05 (2021): 46–52. http://dx.doi.org/10.37547/tajmei/volume03issue05-08.

Texte intégral
Résumé :
The article considers a method for constructing correlation models for finite-type functions using a set of variables. The use of the method of unknown squares in the construction of correlation models and the construction of higher-quality models is also justified. The proposed correlation models are considered on the example of statistical data of the Bukhara region of the Republic of Uzbekistan.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Kratz, Werner. "An inequality for finite differences via asymptotics of Riccati matrix difference equations." Journal of Difference Equations and Applications 4, no. 3 (1998): 229–46. http://dx.doi.org/10.1080/10236199808808140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Loula, Abimael F. D., Daniel T. Fernandes, and Rubem A. Silva. "Generalized finite element and finite differences methods for the Helmholtz problem." IOP Conference Series: Materials Science and Engineering 10 (June 1, 2010): 012157. http://dx.doi.org/10.1088/1757-899x/10/1/012157.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Zegeling, Paul A. "r-refinement for evolutionary PDEs with finite elements or finite differences." Applied Numerical Mathematics 26, no. 1-2 (1998): 97–104. http://dx.doi.org/10.1016/s0168-9274(97)00086-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Neta, Beny, and Jerome O. Igwe. "Finite differences versus finite elements for solving nonlinear integro-differential equations." Journal of Mathematical Analysis and Applications 112, no. 2 (1985): 607–18. http://dx.doi.org/10.1016/0022-247x(85)90266-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Flores, B. E., J. P. Hennart, and E. del Valle. "Mesh-centered finite differences from unconventional mixed-hybrid nodal finite elements." Numerical Methods for Partial Differential Equations 22, no. 6 (2006): 1348–60. http://dx.doi.org/10.1002/num.20157.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Hennart, J. P., and E. del Valle. "Mesh-centered finite differences from nodal finite elements for elliptic problems." Numerical Methods for Partial Differential Equations 14, no. 4 (1998): 439–65. http://dx.doi.org/10.1002/(sici)1098-2426(199807)14:4<439::aid-num2>3.0.co;2-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Shestakov, A. I. "Comparison of finite differences and finite elements on a parabolic problem." Journal of Computational Physics 79, no. 1 (1988): 231–43. http://dx.doi.org/10.1016/0021-9991(88)90014-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Stanisławski, Rafał, and Krzysztof J. Latawiec. "Normalized finite fractional differences: Computational and accuracy breakthroughs." International Journal of Applied Mathematics and Computer Science 22, no. 4 (2012): 907–19. http://dx.doi.org/10.2478/v10006-012-0067-9.

Texte intégral
Résumé :
This paper presents a series of new results in finite and infinite-memory modeling of discrete-time fractional differences. The introduced normalized finite fractional difference is shown to properly approximate its fractional difference original, in particular in terms of the steady-state properties. A stability analysis is also presented and a recursive computation algorithm is offered for finite fractional differences. A thorough analysis of computational and accuracy aspects is culminated with the introduction of a perfect finite fractional difference and, in particular, a powerful adaptiv
Styles APA, Harvard, Vancouver, ISO, etc.
45

Omkar, R., M. Lalu, and K. Phaneendra. "Numerical solution of differential-difference equations having an interior layer using nonstandard finite differences." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 110, no. 2 (2023): 104–15. http://dx.doi.org/10.31489/2023m2/104-115.

Texte intégral
Résumé :
This paper addresses the solution of a differential-difference type equation having an interior layer behaviour. A difference scheme is suggested to solve this equation using a non-standard finite difference method. Finite differences are derived from the first and second order derivatives. Using these approximations, the given equation is discretized. The discretized equation is solved using the algorithm for the tridiagonal system. The method is examined for convergence. Numerical examples are illustrated to validate the method. Maximum errors in the solution, in contrast to the other method
Styles APA, Harvard, Vancouver, ISO, etc.
46

Lugo Jiménez, Abdul Abner, Guelvis Enrique Mata Díaz, and Bladismir Ruiz. "A comparative analysis of methods: mimetics, finite differences and finite elements for 1-dimensional stationary problems." Selecciones Matemáticas 8, no. 1 (2021): 1–11. http://dx.doi.org/10.17268/sel.mat.2021.01.01.

Texte intégral
Résumé :
Numerical methods are useful for solving differential equations that model physical problems, for example, heat transfer, fluid dynamics, wave propagation, among others; especially when these cannot be solved by means of exact analysis techniques, since such problems present complex geometries, boundary or initial conditions, or involve non-linear differential equations. Currently, the number of problems that are modeled with partial differential equations are diverse and these must be addressed numerically, so that the results obtained are more in line with reality. In this work, a comparison
Styles APA, Harvard, Vancouver, ISO, etc.
47

Sirotina, Natalia, Anna Kopoteva, and Andrey Zatonskiy. "FINITE DIFFERENCES METHOD FOR SOCIO-ECONOMIC MODELING." Applied Mathematics and Control Sciences, no. 1 (April 14, 2021): 174–89. http://dx.doi.org/10.15593/2499-9873/2021.1.10.

Texte intégral
Résumé :
In the issue we consider socio-economic processes modeling based on first and second order finite differences models. Since commonly used modeling methods have drawbacks and thus are not universal it was necessary to develop alternative methods which are better in some aspects. Specifically multiple linear regression models have limited prediction abilities, and differential regression coefficient evaluation method is quite complex and have some economically uninterpreted excess tunings. In our research we replaced first and second order derivatives in differential regression models with their
Styles APA, Harvard, Vancouver, ISO, etc.
48

ERZAN, Ayşe. "Finite q-differences and the Renormalization Group." Turkish Journal of Physics 21, no. 1 (1997): 179. http://dx.doi.org/10.55730/1300-0101.2477.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Guillotte, Henry P. "The Method of Finite Differences: Some Applications." Mathematics Teacher 79, no. 6 (1986): 466–70. http://dx.doi.org/10.5951/mt.79.6.0466.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Mango. "ON FINITE DIFFERENCES ON A STRING PROBLEM." Journal of Mathematics and Statistics 10, no. 2 (2014): 139–47. http://dx.doi.org/10.3844/jmssp.2014.139.147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!