Littérature scientifique sur le sujet « Fixed-Time and robust estimation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Fixed-Time and robust estimation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Fixed-Time and robust estimation"
OLIINYK, VIACHESLAV, et VOLODYMYR LUKIN. « USE OF SIMILARITY METRICS IN ROBUST TIME DELAY ESTIMATION ». Herald of Khmelnytskyi National University. Technical sciences 319, no 2 (27 avril 2023) : 224–30. http://dx.doi.org/10.31891/2307-5732-2023-319-1-224-230.
Texte intégralThombs, Ryan P. « A Guide to Analyzing Large N, Large T Panel Data ». Socius : Sociological Research for a Dynamic World 8 (janvier 2022) : 237802312211176. http://dx.doi.org/10.1177/23780231221117645.
Texte intégralWu, Tao, Zhengjiang Liu et Guoyou Shi. « Practical Fixed-Time Robust Containment Control of Multi-ASVs with Collision Avoidance ». Journal of Marine Science and Engineering 12, no 12 (23 décembre 2024) : 2363. https://doi.org/10.3390/jmse12122363.
Texte intégralYoussef, Ahmed Hassen, Mohamed Reda Abonazel et Elsayed G. Ahmed. « Robust M Estimation for Poisson Panel Data Model with Fixed Effects : Method, Algorithm, Simulation, and Application ». Statistics, Optimization & ; Information Computing 12, no 5 (3 juin 2024) : 1292–305. http://dx.doi.org/10.19139/soic-2310-5070-1996.
Texte intégralMagnussen, Steen. « Robust fixed-count density estimation with virtual plots ». Canadian Journal of Forest Research 44, no 4 (avril 2014) : 377–82. http://dx.doi.org/10.1139/cjfr-2013-0288.
Texte intégralChai, Dashuai, Yipeng Ning, Shengli Wang, Wengang Sang, Jianping Xing et Jingxue Bi. « A Robust Algorithm for Multi-GNSS Precise Positioning and Performance Analysis in Urban Environments ». Remote Sensing 14, no 20 (15 octobre 2022) : 5155. http://dx.doi.org/10.3390/rs14205155.
Texte intégralXi, Axing, et Yuanli Cai. « A Nonlinear Finite-Time Robust Differential Game Guidance Law ». Sensors 22, no 17 (2 septembre 2022) : 6650. http://dx.doi.org/10.3390/s22176650.
Texte intégralNakamori, Seiichi. « Robust Recursive Least-Squares Fixed-Point Smoother and Filter using Covariance Information in Linear Continuous-Time Stochastic Systems with Uncertainties ». WSEAS TRANSACTIONS ON SIGNAL PROCESSING 20 (13 mai 2024) : 56–66. http://dx.doi.org/10.37394/232014.2024.20.2.
Texte intégralMentz, Raúl P., et Carlos I. Martínez. « Robust estimation in time series ». Test 11, no 2 (décembre 2002) : 385–404. http://dx.doi.org/10.1007/bf02595713.
Texte intégralGuerrier, Stephane, Roberto Molinari et Maria-Pia Victoria-Feser. « Estimation of Time Series Models via Robust Wavelet Variance ». Austrian Journal of Statistics 43, no 4 (13 juin 2014) : 267–77. http://dx.doi.org/10.17713/ajs.v43i4.45.
Texte intégralThèses sur le sujet "Fixed-Time and robust estimation"
Zhang, Yuqing. « Fixed-time algebraic distributed state estimation for linear systems ». Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2025. http://www.theses.fr/2025ISAB0001.
Texte intégralIn recent decades, the widespread deployment of networked embedded sensors with communication capabilities in large-scale systems has drawn significant attentions fromresearchers to the field of distributed estimation. This thesis aims to develop a fixed-time algebraic distributed state estimation method for both integer-order linear time-varying systems and fractional-order linear-invariant systems in noisy environments, by designing a set of reduced-order local estimators at the networked sensors.To achieve this, we first introduce a distributed estimation scheme by defining a recovered node set at each sensor node, based on a digraph assumption that is more relaxed than the strongly connected one. Using this recovered set, we construct an invertible transformation for the observability decomposition to identify each node’s local observable subsystem. Additionally, this transformation allows for a distributed representation of the entire system state at each node by a linear combination of its own local observable state and those of the nodes in its recovered set. This ensures that each node can achieve the distributed state estimation, provided that the estimations for the set of local observable states are ensured. As a result, this distributed scheme focuses on estimating the local observable states, enabling distributed estimation across the sensor network.Building on this foundation, to address the fixed-time algebraic state estimation for each identified local observable subsystem, different modulating functions estimation methods are investigated to derive the initial-condition-independent algebraic formulas, making them effective as reduced-order local fixed-time estimators. For integer-order linear time-varying systems, the transformation used in developing distributed estimation scheme yields a linear time-varying partial observable normal form. The generalized modulating functions method is then applied to estimate each local observable state through algebraic integral formulas of system outputs and their derivatives. For fractional-order linear-invariant systems, another transformation is used to convert each identified local observable subsystem into a fractional-order observable normal form, allowing for the application of the fractional-order generalized modulating functions estimation method. This method directly computes algebraic integral formulas for local observable pseudo-state variables.Subsequently, by combining these algebraic formulas with the derived distributed representation, we achieve the fixed-time algebraic distributed state estimation for the studied systems. Additionally, an error analysis is conducted to demonstrate the robustness of the designed distributed estimator in the presence of both continuous process and measurement noises, as well as discrete measurement noises. Finally, several simulation examples are provided to validate the effectiveness of the proposed distributed estimation scheme
Copeland, Andrew David 1978. « Robust motion estimation in the presence of fixed pattern noise ». Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/87395.
Texte intégralIncludes bibliographical references (p. 41-42).
by Andrew David Copeland.
M.Eng.
Kwan, Tan Hwee. « Robust estimation for structural time series models ». Thesis, London School of Economics and Political Science (University of London), 1990. http://etheses.lse.ac.uk/2809/.
Texte intégralSinha, Sanjoy Kumar. « Some aspects of robust estimation in time series analysis ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ57354.pdf.
Texte intégralZheng, Xueying, et 郑雪莹. « Robust joint mean-covariance model selection and time-varying correlation structure estimation for dependent data ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50899703.
Texte intégralpublished_or_final_version
Statistics and Actuarial Science
Doctoral
Doctor of Philosophy
Kovac, Arne. « Wavelet thresholding for unequally time-spaced data ». Thesis, University of Bristol, 1999. http://hdl.handle.net/1983/2088715a-7792-4032-bb76-83e3b0389b94.
Texte intégralSkoglund, Johan. « Robust Real-Time Estimation of Region Displacements in Video Sequences ». Licentiate thesis, Linköping : Department of Electrical Engineering, Linköpings universitet, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8006.
Texte intégralLaMaire, Richard O. « Robust time and frequency domain estimation methods in adaptive control ». Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14795.
Texte intégralMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Supported, in part, by the NASA Ames & Langley Research Centers, the Office of Naval Research, and the National Science Foundation.
Bibliography: v. 2, leaves 334-337.
by Richard Orville LaMaire.
Ph.D.
Staerman, Guillaume. « Functional anomaly detection and robust estimation ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAT021.
Texte intégralEnthusiasm for Machine Learning is spreading to nearly all fields such as transportation, energy, medicine, banking or insurance as the ubiquity of sensors through IoT makes more and more data at disposal with an ever finer granularity. The abundance of new applications for monitoring of complex infrastructures (e.g. aircrafts, energy networks) together with the availability of massive data samples has put pressure on the scientific community to develop new reliable Machine-Learning methods and algorithms. The work presented in this thesis focuses around two axes: unsupervised functional anomaly detection and robust learning, both from practical and theoretical perspectives.The first part of this dissertation is dedicated to the development of efficient functional anomaly detection approaches. More precisely, we introduce Functional Isolation Forest (FIF), an algorithm based on randomly splitting the functional space in a flexible manner in order to progressively isolate specific function types. Also, we propose the novel notion of functional depth based on the area of the convex hull of sampled curves, capturing gradual departures from centrality, even beyond the envelope of the data, in a natural fashion. Estimation and computational issues are addressed and various numerical experiments provide empirical evidence of the relevance of the approaches proposed. In order to provide recommendation guidance for practitioners, the performance of recent functional anomaly detection techniques is evaluated using two real-world data sets related to the monitoring of helicopters in flight and to the spectrometry of construction materials.The second part describes the design and analysis of several robust statistical approaches relying on robust mean estimation and statistical data depth. The Wasserstein distance is a popular metric between probability distributions based on optimal transport. Although the latter has shown promising results in many Machine Learning applications, it suffers from a high sensitivity to outliers. To that end, we investigate how to leverage Medians-of-Means (MoM) estimators to robustify the estimation of Wasserstein distance with provable guarantees. Thereafter, a new statistical depth function, the Affine-Invariant Integrated Rank-Weighted (AI-IRW) depth is introduced. Beyond the theoretical analysis carried out, numerical results are presented, providing strong empirical confirmation of the relevance of the depth function proposed. The upper-level sets of statistical depths—the depth-trimmed regions—give rise to a definition of multivariate quantiles. We propose a new discrepancy measure between probability distributions that relies on the average of the Hausdorff distance between the depth-based quantile regions w.r.t. each distribution and demonstrate that it benefits from attractive properties of data depths such as robustness or interpretability. All algorithms developed in this thesis are open-sourced and available online
Chapman, Michael Addison. « Adaptation and Installation of a Robust State Estimation Package in the Eef Utility ». Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/31432.
Texte intégralMaster of Science
Livres sur le sujet "Fixed-Time and robust estimation"
Ladlow, Peter Thomas. Robust parameter estimation techniques for time-varying processes. Birmingham : University of Birmingham, 1998.
Trouver le texte intégralSubrahmanyam, Allamaraju, et Ganti Prasada Rao. Identification of Continuous-Time Systems : Linear and Robust Parameter Estimation. Taylor & Francis Group, 2019.
Trouver le texte intégralRobust time and frequency domain estimation methods in adaptive control. Cambridge, Mass : Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, 1987.
Trouver le texte intégralSubrahmanyam, Allamaraju, et Ganti Prasada Rao. Identification of Continuous-Time Systems : Linear and Robust Parameter Estimation. Taylor & Francis Group, 2019.
Trouver le texte intégralSubrahmanyam, Allamaraju, et Ganti Prasada Rao. Identification of Continuous-Time Systems : Linear and Robust Parameter Estimation. Taylor & Francis Group, 2019.
Trouver le texte intégralSubrahmanyam, Allamaraju, et Ganti Prasada Rao. Identification of Continuous-Time Systems : Linear and Robust Parameter Estimation. Taylor & Francis Group, 2019.
Trouver le texte intégralAnjum, Rani Lill, et Stephen Mumford. Same Cause, Same Effect. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198733669.003.0005.
Texte intégralHankin, David, Michael S. Mohr et Kenneth B. Newman. Sampling Theory. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198815792.001.0001.
Texte intégralChapitres de livres sur le sujet "Fixed-Time and robust estimation"
Subrahmanyam, Allamaraju, et Ganti Prasada Rao. « Robust Parameter Estimation ». Dans Identification of Continuous-Time Systems, 63–79. First edition. | New York, N.Y. : CRC Press/Taylor & Francis Group, 2020. | Series : Engineering systems and sustainability : CRC Press, 2019. http://dx.doi.org/10.1201/9780429352850-4.
Texte intégralMangoubi, Rami S. « Discrete-Time Robust Estimation ». Dans Robust Estimation and Failure Detection, 43–84. London : Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-1586-1_3.
Texte intégralAgostinelli, C. « Robust Time Series Estimation via Weighted Likelihood ». Dans Developments in Robust Statistics, 1–16. Heidelberg : Physica-Verlag HD, 2003. http://dx.doi.org/10.1007/978-3-642-57338-5_1.
Texte intégralSeong, Junyeong, Sungjun Park et Kunsoo Huh. « Robust Lane Keeping Control with Estimation of Cornering Stiffness and Model Uncertainty ». Dans Lecture Notes in Mechanical Engineering, 272–78. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_39.
Texte intégralPetersen, Ian R., et Andrey V. Savkin. « Discrete-Time Set-Valued State Estimation ». Dans Robust Kalman Filtering for Signals and Systems with Large Uncertainties, 71–87. Boston, MA : Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1594-3_5.
Texte intégralWu, Renbiao, Qiongqiong Jia, Lei Yang et Qing Feng. « Application of RELAX in Time Delay Estimation ». Dans Principles and Applications of RELAX : A Robust and Universal Estimator, 101–57. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6932-2_4.
Texte intégralda Silva, Nuno Pinho, et João Paulo Costeira. « Robust Global Mosaic Topology Estimation for Real-Time Applications ». Dans Lecture Notes in Computer Science, 1250–57. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11559573_151.
Texte intégralGershon, Eli, et Uri Shaked. « Robust Estimation of Linear-Switched Systems with Dwell Time ». Dans Advances in H∞ Control Theory, 61–73. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16008-1_5.
Texte intégralCheng, Yu, Ilias Diakonikolas et Rong Ge. « High-Dimensional Robust Mean Estimation in Nearly-Linear Time ». Dans Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2755–71. Philadelphia, PA : Society for Industrial and Applied Mathematics, 2019. http://dx.doi.org/10.1137/1.9781611975482.171.
Texte intégralReich, Sebastian. « Frequentist Perspective on Robust Parameter Estimation Using the Ensemble Kalman Filter ». Dans Mathematics of Planet Earth, 237–58. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18988-3_15.
Texte intégralActes de conférences sur le sujet "Fixed-Time and robust estimation"
Koizumi, Kakeru, et Hiroshi Watanabe. « Event-based Robust 3D Pose Estimation Using Time Series Data ». Dans 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC), 1223–27. IEEE, 2024. http://dx.doi.org/10.1109/aic61668.2024.10731089.
Texte intégralLv, Yuezhang, Yunzhou Zhang, Xiaoyu Zhao, Wu Li, Jian Ning et Yang Jin. « CTA-LO : Accurate and Robust LiDAR Odometry Using Continuous-Time Adaptive Estimation ». Dans 2024 IEEE International Conference on Robotics and Automation (ICRA), 12034–40. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611453.
Texte intégralPnevmatikakis, Aristodemos, et Lazaros Polymenakos. « Robust Estimation of Background for Fixed Cameras ». Dans 2006 15th International Conference on Computing. IEEE, 2006. http://dx.doi.org/10.1109/cic.2006.63.
Texte intégralLee, You-Seok, et Hyoung-Nam Kim. « Noise-Robust Channel Estimation for DVB-T Fixed Receptions ». Dans 2007 Digest of Technical Papers International Conference on Consumer Electronics. IEEE, 2007. http://dx.doi.org/10.1109/icce.2007.341562.
Texte intégralRoy, Shibdas, Ian R. Petersen et Elanor H. Huntington. « Adaptive continuous homodyne phase estimation using robust fixed-interval smoothing ». Dans 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580312.
Texte intégralVerling, Sebastian L., et Roland Siegwart. « Robust Wind Estimation for Fixed Wing UAVs in Surveying Applications ». Dans AIAA Scitech 2019 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-0373.
Texte intégralMcPhee, Hamish, Jean-Yves Tourneret, David Valat, Philippe Paimblanc, Jérome Delporte et Yoan Grégoire. « A Robust Time Scale Based on Maximum Likelihood Estimation ». Dans 54th Annual Precise Time and Time Interval Systems and Applications Meeting. Institute of Navigation, 2023. http://dx.doi.org/10.33012/2023.18701.
Texte intégralAbu Bakar, Nor Mazlina, et Habshah Midi. « The Applications of Robust Estimation in Fixed Effect Panel Data Model ». Dans Proceedings of the 1st Aceh Global Conference (AGC 2018). Paris, France : Atlantis Press, 2019. http://dx.doi.org/10.2991/agc-18.2019.54.
Texte intégralWenqiang Liu et Zili Deng. « Robust steady-state Kalman filter for uncertain discrete-time system ». Dans 2015 International Conference on Estimation, Detection and Information Fusion (ICEDIF). IEEE, 2015. http://dx.doi.org/10.1109/icedif.2015.7280188.
Texte intégralZhang, Zhaoyu, et Haibin Duan. « Robust Adaptive Filter for Time-Varying Parameters Estimation in Integrated Navigation of Fixed-Wing Aerial Robot* ». Dans 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2023. http://dx.doi.org/10.1109/robio58561.2023.10354695.
Texte intégralRapports d'organisations sur le sujet "Fixed-Time and robust estimation"
Galindo, Arturo, et Marcela Meléndez Arjona. Corporate Tax Stimulus and Investment in Colombia. Inter-American Development Bank, avril 2010. http://dx.doi.org/10.18235/0010933.
Texte intégralRojas-Bernal, Alejandro, et Mauricio Villamizar-Villegas. Pricing the exotic : Path-dependent American options with stochastic barriers. Banco de la República de Colombia, mars 2021. http://dx.doi.org/10.32468/be.1156.
Texte intégralSchling, Maja, Nicolás Pazos, Leonardo Corral et Marisol Inurritegui. The Effects of Tenure Security on Women's Empowerment and Food Security : Evidence From a Land Regularization Program in Ecuador. Inter-American Development Bank, décembre 2023. http://dx.doi.org/10.18235/0005355.
Texte intégralBaltagi, Badi H., Georges Bresson, Anoop Chaturvedi et Guy Lacroix. Robust dynamic space-time panel data models using ε-contamination : An application to crop yields and climate change. CIRANO, janvier 2023. http://dx.doi.org/10.54932/ufyn4045.
Texte intégralPinkovskiy, Maxim, Xavier Sala-i-Martin, Kasey Chatterji-Len et William Nober. Inequality Within Countries is Falling : Underreporting Robust Estimates of World Poverty, Inequality, and the Global Distribution of Income. Federal Reserve Bank of New York, septembre 2024. http://dx.doi.org/10.59576/sr.1125.
Texte intégralStucchi, Rodolfo, Alessandro Maffioli, Sofía Rojo et Victoria Castillo. Knowledge Spillovers of Innovation Policy through Labor Mobility : An Impact Evaluation of the FONTAR Program in Argentina. Inter-American Development Bank, février 2014. http://dx.doi.org/10.18235/0011534.
Texte intégralArizala, Francisco, Eduardo A. Cavallo et Arturo Galindo. Financial Development and TFP Growth : Cross-Country and Industry-Level Evidence. Inter-American Development Bank, juin 2009. http://dx.doi.org/10.18235/0010917.
Texte intégralChong, Alberto E., et Eliana La Ferrara. Television and Divorce : Evidence from Brazilian Novelas. Inter-American Development Bank, janvier 2009. http://dx.doi.org/10.18235/0010906.
Texte intégralGonzález, Francisco, José E. Gutiérrez et José María Serena. Shadow seniority ? Lending relationships and borrowers’ selective default. Madrid : Banco de España, juin 2024. http://dx.doi.org/10.53479/36695.
Texte intégralTorero, Máximo, et Jaime Saavedra-Chanduví. Union Density Changes and Union Effects on Firm Performance in Peru. Inter-American Development Bank, septembre 2002. http://dx.doi.org/10.18235/0011249.
Texte intégral