Littérature scientifique sur le sujet « Flaviviru »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Flaviviru ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Flaviviru"
Morita, Eiji, et Youichi Suzuki. « Membrane-Associated Flavivirus Replication Complex—Its Organization and Regulation ». Viruses 13, no 6 (3 juin 2021) : 1060. http://dx.doi.org/10.3390/v13061060.
Texte intégralFontoura, Marina Alves, Rebeca Fróes Rocha et Rafael Elias Marques. « Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection ». Life 11, no 7 (20 juillet 2021) : 717. http://dx.doi.org/10.3390/life11070717.
Texte intégralWee, Sheena, Asfa Alli-Shaik, Relus Kek, Hannah L. F. Swa, Wei-Ping Tien, Vanessa W. Lim, Yee-Sin Leo, Lee-Ching Ng, Hapuarachchige C. Hapuarachchi et Jayantha Gunaratne. « Multiplex targeted mass spectrometry assay for one-shot flavivirus diagnosis ». Proceedings of the National Academy of Sciences 116, no 14 (18 mars 2019) : 6754–59. http://dx.doi.org/10.1073/pnas.1817867116.
Texte intégralvan den Elsen, Kaïn, Jun Ping Quek et Dahai Luo. « Molecular Insights into the Flavivirus Replication Complex ». Viruses 13, no 6 (21 mai 2021) : 956. http://dx.doi.org/10.3390/v13060956.
Texte intégralThibodeaux, Brett A., et John T. Roehrig. « Development of a Human-Murine Chimeric Immunoglobulin M Antibody for Use in the Serological Detection of Human Flavivirus Antibodies ». Clinical and Vaccine Immunology 16, no 5 (18 mars 2009) : 679–85. http://dx.doi.org/10.1128/cvi.00354-08.
Texte intégralSeo, Min-Goo, Hak Seon Lee, Sung-Chan Yang, Byung-Eon Noh, Tae-Kyu Kim, Wook-Gyo Lee et Hee Il Lee. « National Monitoring of Mosquito Populations and Molecular Analysis of Flavivirus in the Republic of Korea in 2020 ». Microorganisms 9, no 10 (2 octobre 2021) : 2085. http://dx.doi.org/10.3390/microorganisms9102085.
Texte intégralQiu, Yang, Yan-Peng Xu, Miao Wang, Meng Miao, Hui Zhou, Jiuyue Xu, Jing Kong et al. « Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes ». Science Advances 6, no 6 (février 2020) : eaax7989. http://dx.doi.org/10.1126/sciadv.aax7989.
Texte intégralWu, Bingan, Zhongtian Qi et Xijing Qian. « Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development ». Viruses 15, no 4 (23 mars 2023) : 813. http://dx.doi.org/10.3390/v15040813.
Texte intégralBidet, Katell, et Mariano A. Garcia-Blanco. « Flaviviral RNAs : weapons and targets in the war between virus and host ». Biochemical Journal 462, no 2 (7 août 2014) : 215–30. http://dx.doi.org/10.1042/bj20140456.
Texte intégralBlahove, Maria Raisa, et James Richard Carter. « Flavivirus Persistence in Wildlife Populations ». Viruses 13, no 10 (18 octobre 2021) : 2099. http://dx.doi.org/10.3390/v13102099.
Texte intégralThèses sur le sujet "Flaviviru"
Lequime, Sébastian. « Interactions flavivirus-moustiques : diversité et transmission ». Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066081/document.
Texte intégralFlaviviruses are RNA virus among which some are arboviruses transmitted between vertebrate hosts and arthropod vectors, like mosquitoes. The interaction with mosquitoes is key in the biology of flaviviruses because it influences their genetic diversity and transmission. However, some aspects however are still poorly understood. At the heart of the work presented in this dissertation, strategies based on ‘big data’, both by taking advantage of modern technologies and by compiling older literature, highlighted new aspects of the complex relationships between flaviviruses and mosquitoes. While exploring Anopheles mosquito genomes, we identified and characterized endogenous viral elements of flaviviral origin in Anopheles sinensis and An. minimus, which supports the existence of flaviviruses infecting Anopheles mosquitoes and highlights new aspected of their diversity. Besides, we explored, by deep sequencing, the fine-tuned interaction between genotypes of the mosquito Aedes aegypti and the intra-host diversity of dengue virus 1. Our results showed a strong effect of genetic drift during initial infection, reducing the relative importance of natural selection, and a modulation of the intra-host viral genetic diversity by the mosquito genotype. Finally, we assembled the litterature on arbovirus vertical transmission in the mosquito vector, i.e. from an infected female to her offspring, in order to identify underlying technical and biological predictors. Our results increase our understanding of this transmission mode and the strategies employed by arboviruses to persist in their environment
Khou, Cécile. « Etude du neurotropisme des Flavivirus neuropathogènes ». Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC305/document.
Texte intégralNeuropathogenic Flaviviruses, such as Japanese encephalitis virus (JEV), West Nile virus (WNV), yellow fever virus (YFV) and Zika virus (ZIKV), cause neurological diseases. These diseases are due to viral infection of central nervous system (CNS) cells. The CNS is a privileged organ, isolated from pathogenic agents by a barrier between the blood and the barrier, called the blood-brain barrier (BBB). Neuropathogenic Flaviviruses which can cross this BBB in order to reach their target cells in the CNS, are neuroinvasive. This study aims at understanding the cellular mechanisms by which YFV and JEV Flaviviruses cross the BBB and the effects of viral infection by WNV and ZIKV of the CNS cells during neocortex development.YFV is a hepatrotopic virus, which mostly infects the liver and the kidneys. The two live-attenuated vaccines against YFV, the FNV (for French Neurotropic Virus) vaccine and the 17D vaccine, were obtained empirically by several passages in suckling mouse brain of YFV virulent strains. These vaccines do not cause any disease targeting the liver or the kidneys, but can sometimes cause post-vaccine encephalitis. These encephalitis cases suggest that the vaccine strains have become neurovirulent and neuroinvasive. Due to high risks of post-vaccine encephalitis, the FNV vaccine use was discontinued in the 1980s.JEV is a neurotropic virus, causing acute encephalitis in South East Asia. To date, there is a live-attenuated vaccine against JEV, the JEV SA14-14-2 vaccine, which was obtained empirically by several passages in primary hamster kidney cells. This vaccine is less neurovirulent and less neuroinvasive than JEV virulent strains in mouse model, and it protects against JEV infections. However, some cases of post-vaccine encephalitis were reported. It thus seems that, in some cases, the vaccine strain JEV SA14-14-2 is able to cross the BBB and infect neuronal cells.The recent ZIKV epidemics in French Polynesia and South America were linked to an increase in the number of congenital malformations, rising questions regarding the capacity of a Flavivirus to induce CNS congenital malformations.In this study, we have identified cellular mechanisms involved in Flavivirus neuroinvasion and studied the effect of ZIKV and WNV infection of neuronal cells under development.To study CNS development, we have infected mouse embryos brain slices. We were able to show that ZIKV has a preferential tropism for neuronal progenitors, whereas WNV has a preferential tropism for neuronal cells. We also show that infection of neuronal progenitors by ZIKV impairs the cell life cycle, whereas no effect on the cell life cycle was observed for WNV-infected cells. Studies on apoptosis induction did not show any difference between both viruses at early time points of infection.To study Flavivirus neuroinvasion, we have used an in vitro model of BBB composed of human endothelial hCMEC/D3 cells that can form tight junctions. These cells were cultivated on Transwell inserts and placed above human neuronal cells. Using this system, we show that YFV FNV cross the BBB more efficiently than YFV 17D, suggesting that YFV FNV is more neuroinvasive than YFV 17D. This observation can explain the higher post-vaccine encephalitis risks associated with YFV FNV vaccine compared to YFV 17D vaccine. We also confirmed that JEV SA14-14-2 vaccine strain is less neuroinvasive than JEV RP9.We also examined how JEV crosses the BBB and the endothelial cell response following JEV treatment. We show that both JEV RP9 and SA14-14-2 are able to cross the BBB without infecting its endothelial cells and without disrupting the BBB. Preliminary results suggest that JEV RP9, but not JEV SA14-14-2, crosses the BBB by dynamin-dependant transcytosis. Transcriptomic analysis of endothelial cells treated by either virus show slight, but significant, differences in regulation of genes implicated in several pathways associated with CNS diseases
Silveira, Roberta Maraninchi. « Localização subcelular do vírus da Zika durante a infecção em células humanas ». Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/17/17136/tde-13092018-105525/.
Texte intégralZika virus (ZIKV) is an arbovirus of the Flaviviridae family, of the genus Flavivirus that is transmitted by Aedes mosquitoes. Despite its emerging importance in public health, little is known about the molecular mechanisms involved in the replicative cycle of ZIKV in human cells. Thus, the general objective of this study was to characterize the subcellular distribution of the ZIKV in the host cell and to elucidate cellular factors that regulate the intracellular trafficking of proteins involved in these processes. More specifically, to determine the cellular compartments that serve as assembly platforms for the ZIKV. In addition, the study aimed to verify if the functioning of the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is required in the replicative cycle of ZIKV. In order to identify the subcellular localization of ZIKV, different intracellular markers were used, and, according to the results, it was demonstrated that at 3 hours post infection (h. p. i.) ZIKV proteins colocalize with an early endosome marker, whereas within 15h p.i. it is already possible to detect newlysynthesized viral proteins in the endoplasmic reticulum (ER). Subsequently, within 27h p.i., the ZIKV is directed to the Golgi complex. Together, these results delineate the targeting of ZIKV proteins through the secretory pathway over time. In addition, the involvement of the ESCRT machinery was tested by knocking down the expression of ESCRT-I protein TSG101 in ZIKV-infected cells. The results obtained suggest that ESCRT-I plays an important role in ZIKV replication, with viral titers decreasing when TSG101 levels are depleted in the cell. Together, the results allow us to conclude that ZIKV is associated with the initial secretory pathways (RE and Golgi complex) throughout the infection, and that the ESCRT-I TSG101 protein plays an important role in viral replication. Thus, this study contributes to a better understanding of the dynamics of ZIKV replication in human cells.
Grard, Gilda. « Génomique et évolution des flavivirus transmis par les tiques et découverte d'un nouveau lignage du genre flavivirus ». Aix-Marseille 2, 2006. http://www.theses.fr/2006AIX20679.
Texte intégralGollins, S. W. « Mechanisms of flavivirus neutralization and cellular infection ». Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355752.
Texte intégralDayaraj, Cecilia. « Molecular and immunological studies on flavivirus virulence ». Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279888.
Texte intégralCarney, Jennifer. « Viral Determinants of Flavivirus Neurotropism in Humans ». Thesis, University of Liverpool, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526956.
Texte intégralPacca, Carolina Colombelli. « Screening de novos antivirais inibidores de flavivirus ». Faculdade de Medicina de São José do Rio Preto, 2013. http://bdtd.famerp.br/handle/tede/201.
Texte intégralCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Introduction. Arboviruses, arthropod-borne viruses, are frequently associated with human outbreaks and represent a serious health problem. The genus Flavivirus, which includes both the Yellow Fever Virus (YFV) and Saint Louis Encephalitis Virus (SLEV), are important pathogens that result in high morbidity and mortality rates worldwide. In Brazil, YFV has a sylvatic cycle and occurs annually, despite the efficiency of the vaccine. Saint Louis Encephalitis is an infectious illness that can cause acute fever caused by SLEV, which is widely distributed in the Americas. The emergence of SLEV became a serious concern after the first related outbreak in Brazil in 2006, in the city of Sao Jose do Rio Preto. There is no specific antiviral drug for these viruses, only supporting treatment that can alleviate the symptoms and prevent complications. The need to develop effective and safe antiviral drugs is indispensable for the treatment of these infections. Objective. The aim of this work was to identify new possible antiviral drugs against the arboviruses that can cause acute fever and encephalitis (YFV and SLEV) and to evaluate the capacity of inhibition of these compounds in ABR mice. Material and Methods. Plaque reduction assay, flow citometry, immunofluorescence and cellular viability were used to test the compounds in vitro. ABR mice were inoculated with YFV, and the biological samples were tested for the presence of the virus through the use of plaque reduction assay and qPCR. Neutralization assay was also performed. Results. Treated cells showed efficient inhibition of viral replication at concentrations that presented minimal toxicity to the cells. The assays showed that ftalyl-tiazole and fenoxytiosemicarbazone were more effective, and that they reduced viral replication by 60% and 75% for YFV and SLEV, respectively. The analysis also revealed that the ABR mice inoculated with YFV had histopathological alterations in the liver; however, the samples did not present viral title. Neutralization assay showed a high concentration of antibodies in the serum. Conclusion. The inhibitions of viral replication were confirmed through the use of some assays in vitro, and the effectiveness of the selected compounds show that they are an option in the treatment of these viruses. More detailed studies are needed to determine the mechanism of action of these molecules. The mice were found to have histopathological alterations, which indicates viral infection; however, they also presented with high concentrations of antibodies. More studies about animal models are necessary to make in vivo experiments.
Introdução: Os arbovírus, vírus transmitidos por artrópodes, são freqüentemente associadas a surtos em seres humanos e representam um problema sério de saúde pública. Os vírus pertencentes ao gênero Flavivirus, tais como vírus da Febre Amarela (YFV) e vírus da Encefalite de Saint Louis (SLEV), são importantes patógenos que podem causar alta taxa de morbidade e mortalidade no mundo. No Brasil, YFV é mantido em ciclo silvestre notificados anualmente, a despeito da segurança e eficiência da vacina. A encefalite de Saint Louis é uma doença infecciosa febril aguda causada pelo SLEV amplamente distribuída nas Américas. A emergência do SLEV passou a ser um fato preocupante no Brasil a partir da constatação do primeiro surto no país em 2006, na cidade de São Jose do Rio Preto. Não existe tratamento específico para estas viroses, somente tratamento de suporte para ajudar a aliviar os sintomas e prevenir complicações. Desta forma, há uma grande necessidade de que sejam desenvolvidos antivirais efetivos e seguros para o tratamento destas infecções. Objetivos: O objetivo deste trabalho foi identificar potenciais compostos antivirais contra os arbovírus causadores de doença febril aguda e encefalites (YFV e SLEV) in vitro e avaliar a capacidade de inibição da replicação viral dos compostos in vivo em camundongos ABR. Materiais e Métodos: Para tanto, foram realizados ensaios de redução de placas, citometria de fluxo, imunofluorescencia, bem como testes de viabilidade celular para as analises in vitro. Além disto, camundongos ABR foram inoculados com YFV e seus materiais biológicos testados para a presença de partículas virais por ensaio de redução de placas e qPCR. Adicionalmente, foi realizado ensaio de neutralização do soro dos animais. Resultados: Celulas tratadas com os compostos mostraram eficiente inibição da replicação viral em concentrações que apresentam baixa citotoxicidade. Os ensaios mostraram que derivados de ftalyl-tiazole e fenoxytiosemicarbazone foram os mais eficazes na ação antiviral, apresentando redução de 60% e 75% para YFV e SLEV, respectivamente. Camundongos ABR inoculados com YFV apresentaram alterações histológicas no fígado, entretanto, não foi constatado título viral nas amostras testadas. O ensaio de neutralização mostra altas concentrações de anticorpos no soro dos animais. Conclusões: A inibição da replicação foi comprovada por vários ensaios in vitro evidenciando as moléculas como potentes alternativas para o tratamento dos vírus. Mais estudos são necessários para a determinação do mecanismo de ação destas moléculas. Os camundongos apresentaram alterações histopatológicas sendo um indicativo de infecção, entretanto, apresentam altas taxas de anticorpos. Mais estudos sobre modelo animal são necessários para a realização de ensaios in vivo.
Singethan, Katrin. « Untersuchungen zur Inhibition Paramyxo- und Flavivirus-induzierter Membranfusion ». kostenfrei, 2009. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3634/.
Texte intégralCunha, Mariana Sequetin. « Validação e uso de transcrição reversa seguida da reação em cadeia pela polimerase em tempo real (RT-qPCR) para a vigilância e diagnóstico de flavivírus transmitidos por mosquitos circulantes no Brasil ». Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/10/10133/tde-16102018-113026/.
Texte intégralFlaviviruses are considered a serious threat to public health in many parts of the world, as many are highly pathogenic to humans and animals, such as Yellow Fever virus, West Nile virus, Japanese encephalitis virus and dengue virus, which are capable of causing encephalitis or hemorrhagic fever in their hosts. Many of them have spread to different geographic regions where their circulation had not been detected previously, causing new outbreaks. Diagnosis of these infections is often difficult, due to the large number of symptoms presented, which can be confused with other diseases of different etiological causes. The main direct methods currently used in Brazil for detecting these viruses are intracerebral inoculation in neonatal mice, inoculation in cell cultures and specific RT-PCR. The present work aims to evaluate the sensitivity and validate the detection of viruses belonging to the genus Flavivirus circulating in Brazil through a single real-time RT-PCR reaction and to implement it, both in the diagnostic routine of cases with arbovirus suspicions and in field samples for viral monitoring. Samples of the standard flaviviruses Yellow Fever, Bussuquara, Iguape, Ilheus, Saint Louis Encephalitis, Cacipacore and Zika were quantified by titration by plaque forming units (UFP) or TCID50 to evaluate the detection limits for each of them by RT- qPCR that detects genus Flavivirus. The limits found ranged from 0.01 PFU for Ilheus virus to 1 PFU for Yellow Fever and Iguape viruses and 1x101.6 TCID50 / 100L for the Bussuquara virus. In addition, the present work was able to identify, after cDNA sequencing Zika virus, isolated from a febrile patient, and both Ilheus and Iguape viruses, isolated from different species of Culicidae, and a possible new insect-specific flavivirus, isolated from Aedes mosquitoes collected in Guapiaçu, São Paulo. The Alphaviruses Mayaro and Chikungunya were not amplified. The present protocol shoed high sensitivity and specificity, and therefore it may may be used for the differential diagnosis of the different flaviviruses that occur in Brazil, as well as for viral monitoring studies in sentinel animals and vectors, thus collaborating with public health. It is also possible to detect new flavivirus that are arthopode-specific.
Livres sur le sujet "Flaviviru"
Gregory, Bock, Goode Jamie, Novartis Foundation et Novartis Institute for Tropical Diseases., dir. New treatment strategies for dengue and other flaviviral diseases. Chichester : John Wiley & Sons, 2006.
Trouver le texte intégralShi, Pei-Yong. Molecular virology and control of flaviviruses. Norfolk, UK : Caister Academic Press, 2012.
Trouver le texte intégralBock, Gregory, et Jamie Goode, dir. New Treatment Strategies for Dengue and Other Flaviviral Diseases. Chichester, UK : John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470058005.
Texte intégralRuzek, Daniel, dir. Flavivirus Encephalitis. InTech, 2011. http://dx.doi.org/10.5772/847.
Texte intégralTkachev, Sergey, dir. Non-Flavivirus Encephalitis. InTech, 2011. http://dx.doi.org/10.5772/1740.
Texte intégralVelásquez Serra, Glenda. Garrapatas : Vectores de Flavivirus. CIDEPRO EDITORIAL, 2019. http://dx.doi.org/10.29018/978-9942-823-09-0.
Texte intégralAdvances in Flavivirus Research. MDPI, 2017. http://dx.doi.org/10.3390/books978-3-03842-487-1.
Texte intégralSchlesinger, Milton J., et Sondra Schlesinger. Togaviridae and Flaviviridae. Springer, 2012.
Trouver le texte intégralGoode, Jamie A., et Gregory R. Bock. New Treatment Strategies for Dengue and Other Flaviviral Diseases. Wiley & Sons, Incorporated, John, 2006.
Trouver le texte intégralChapitres de livres sur le sujet "Flaviviru"
Contigiani, Marta S., Luis A. Diaz et Lorena Spinsanti. « Flavivirus ». Dans Arthropod Borne Diseases, 73–88. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-13884-8_6.
Texte intégralHarnett, Gerald B., et Julia A. Cattell. « Flavivirus ». Dans PCR for Clinical Microbiology, 241–44. Dordrecht : Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9039-3_34.
Texte intégralGooch, Jan W. « Flavivirus ». Dans Encyclopedic Dictionary of Polymers, 893. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13767.
Texte intégralWestaway, Edwin G. « Flavivirus‡ ». Dans The Springer Index of Viruses, 461–71. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-95919-1_67.
Texte intégralReid, Hugh W., Herbert Weissenböck et Károly Erdélyi. « Flavivirus Infections ». Dans Infectious Diseases of Wild Mammals and Birds in Europe, 128–45. Oxford, UK : Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118342442.ch9.
Texte intégralGlowacka, Ilona. « Flaviviren ». Dans Medizinische Mikrobiologie und Infektiologie, 607–16. Berlin, Heidelberg : Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61385-6_55.
Texte intégralFalke, D. « Flaviviren ». Dans Springer-Lehrbuch, 463–68. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24167-3_56.
Texte intégralSchomburg, Dietmar, et Dörte Stephan. « Flavivirin ». Dans Enzyme Handbook 15, 757–60. Berlin, Heidelberg : Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58948-5_154.
Texte intégralGlowacka, I. « Flaviviren ». Dans Springer-Lehrbuch, 467–73. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48678-8_56.
Texte intégralYu, Yufeng, Lulu Si et Yu Meng. « Flavivirus Entry Inhibitors ». Dans Advances in Experimental Medicine and Biology, 171–97. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8702-0_11.
Texte intégralActes de conférences sur le sujet "Flaviviru"
Chaley, M. B., Zh S. Tyulko et V. A. Kutyrkin. « Specifics of Coding Sequences in the Flavivirus Genomes ». Dans Mathematical Biology and Bioinformatics. Pushchino : IMPB RAS - Branch of KIAM RAS, 2018. http://dx.doi.org/10.17537/icmbb18.10.
Texte intégral« Recognition of flavivirus species on the base of coding genome sequences ». Dans Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-091.
Texte intégralChaley, M. B., Zh S. Tyulko et V. A. Kutyrkin. « Fast Method to Recognize Flavivirus Species after Sequencing the Viral Genome ». Dans Mathematical Biology and Bioinformatics. Pushchino : IMPB RAS - Branch of KIAM RAS, 2020. http://dx.doi.org/10.17537/icmbb20.12.
Texte intégralwoo Kim, Chan, Se Hwan Ahn et Taeseon Yoon. « Comparison of flavivirus using datamining-Apriori, K-means, and decision tree algorithm ». Dans 2017 19th International Conference on Advanced Communication Technology (ICACT). IEEE, 2017. http://dx.doi.org/10.23919/icact.2017.7890130.
Texte intégralMartins, Raquel, Carolina Cajaraville, Fernando Conte et Márcia Arissawa. « Optimized production of monoclonal antibody used in Flavivirus immunoassays for different projects of vaccine development ». Dans II Seminário Anual Científico e Tecnológico em Imunobiológicos. Instituto de Tecnologia em Imunobiológicos, 2014. http://dx.doi.org/10.35259/isi.sact.2014_28652.
Texte intégralSilva, Thalita Barcelos, Luiza Helena Angarten Ferraz De Carvalho, Dhullya Eduarda Resende Santos, Júlia Emanuelle Macedo Noleto et Hanstter Hallison Alves Rezende. « O ESTUDO DOS FLAVIVÍRUS PELA BIOINFORMÁTICA E A IMPORTÂNCIA NA BUSCA POR ANTIVIRAIS ». Dans I Congresso de Engenharia de Biotecnologia. Revista Multidisciplinar de Educação e Meio Ambiente, 2021. http://dx.doi.org/10.51189/rema/1369.
Texte intégralLima, Michelle, Paloma Pêgo, Gabriel Silva et Salvatore De Simone. « Identification of targeted epitopes of yellow fever virus based on homology with other species of flavivirus ». Dans V Seminário Anual Científico e Tecnológico. Instituto de Tecnologia em Imunobiológicos, 2017. http://dx.doi.org/10.35259/isi.sact.2017_26145.
Texte intégralRadzol, A. R. M., Khuan Y. Lee, W. Mansor et I. S. Omar. « PCA criterion for SVM (MLP) classifier for flavivirus biomarker from salivary SERS spectra at febrile stage ». Dans 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7592146.
Texte intégralNandy, Ashesh, Sumanta Dey, Proyasha Roy, Subhas Basak et Sukhen Das. « Comparison of Base Distributions in Dengue, Zika and Other Flavivirus Envelope and NS5 Genes ». Dans MOL2NET 2017, International Conference on Multidisciplinary Sciences, 3rd edition. Basel, Switzerland : MDPI, 2017. http://dx.doi.org/10.3390/mol2net-03-04966.
Texte intégralSilva, Carla Pinheiro da. « ESTUDO DA RESPOSTA DE ANTICORPOS PARA FLAVIVIRUS NA POPULAÇÃO BRASILEIRA FRENTE À EMERGÊNCIA DO VZIK NO PAÍS ». Dans VIII Seminário de Integração Científica da Universidade do Estado do Pará, chair Lívia Caricio Martins. Universidade do Estado do Pará, 2019. http://dx.doi.org/10.31792/21759766.viiisic.2019.226-230.
Texte intégralRapports d'organisations sur le sujet "Flaviviru"
Paul, Satashree. Flavivirus and its Threat. Science Repository, mars 2021. http://dx.doi.org/10.31487/sr.blog.30.
Texte intégralFournier, Maurille J., et Thomas L. Mason. Structure and Expression of Genes for Flavivirus Immunogens. Fort Belvoir, VA : Defense Technical Information Center, janvier 1992. http://dx.doi.org/10.21236/ada252662.
Texte intégral