Littérature scientifique sur le sujet « Fonctions zêta des hauteurs »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Fonctions zêta des hauteurs ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Fonctions zêta des hauteurs"
de la Bretèche, Régis. « Fonctions zêta des hauteurs ». Journal de Théorie des Nombres de Bordeaux 21, no 1 (2009) : 77–95. http://dx.doi.org/10.5802/jtnb.658.
Texte intégralEssouabri, D. « Prolongements analytiques d’une classe de fonctions zêta des hauteurs et applications ». Bulletin de la Société ; mathématique de France 133, no 2 (2005) : 297–329. http://dx.doi.org/10.24033/bsmf.2488.
Texte intégralCassaigne, Julien, et Vincent Maillot. « Hauteur des hypersurfaces et fonctions Zêta d'Igusa ». Journal of Number Theory 83, no 2 (août 2000) : 226–55. http://dx.doi.org/10.1006/jnth.1999.2490.
Texte intégralBourqui, David. « Fonction zêta des hauteurs des variétés toriques non déployées ». Memoirs of the American Mathematical Society 211, no 994 (2011) : 0. http://dx.doi.org/10.1090/s0065-9266-2010-00609-4.
Texte intégralde la Bretèche, Régis, et Peter Swinnerton-Dyer. « Fonction zêta des hauteurs associée à une certaine surface cubique ». Bulletin de la Société ; mathématique de France 135, no 1 (2007) : 65–92. http://dx.doi.org/10.24033/bsmf.2526.
Texte intégralBourqui, David. « Fonction zêta des hauteurs des surfaces de Hirzebruch dans le cas fonctionnel ». Journal of Number Theory 94, no 2 (juin 2002) : 343–58. http://dx.doi.org/10.1006/jnth.2001.2739.
Texte intégralDan, Nicusor. « Fonctions zêta d'Igusa et fonctions hypergéométriques ». Annales Polonici Mathematici 71, no 1 (1999) : 61–86. http://dx.doi.org/10.4064/ap-71-1-61-86.
Texte intégralMínguez, Alberto. « Fonctions zêta ℓ-modulaires ». Nagoya Mathematical Journal 208 (décembre 2012) : 39–65. http://dx.doi.org/10.1017/s0027763000010588.
Texte intégralGuillopé, Laurent. « Fonctions zêta de Selberg et surfaces de géométrie finie ». Séminaire de théorie spectrale et géométrie 8 (1990) : 89–94. http://dx.doi.org/10.5802/tsg.81.
Texte intégralJenkner, Wolfgang. « Sur les fonctions zêta attachées aux classes de rayon ». Journal de Théorie des Nombres de Bordeaux 7, no 1 (1995) : 1–14. http://dx.doi.org/10.5802/jtnb.126.
Texte intégralThèses sur le sujet "Fonctions zêta des hauteurs"
Bourqui, David. « Fonctions zêta des hauteurs des variétés toriques en caractéristique positive ». Université Joseph Fourier (Grenoble), 2003. https://tel.archives-ouvertes.fr/tel-00004008.
Texte intégralWinckler, Bruno. « Intersection arithmétique et problème de Lehmer elliptique ». Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0233/document.
Texte intégralIn this thesis we consider the problem of lower bounds for the canonical height onelliptic curves, aiming for the conjecture of Lehmer. Our main diophantine result isan explicit version of a theorem of Laurent (who proved this conjecture for ellipticcurves with CM up to a " exponent) using arithmetic intersection, enlightening thedependence with parameters linked to the elliptic curve ; such a result can be motivatedby the conjecture of Lang, hoping for a lower bound proportional to, roughly,the Faltings height of the curve.Nevertheless, our dissertation begins with a part dedicated to a completely explicitversion of the density theorem of Chebotarev, along the lines of a previous workdue to Lagarias and Odlyzko, which will be crucial to investigate the elliptic Lehmerproblem. We also obtain upper bounds for Siegel zeros, and for the smallest primeideal whose Frobenius is in a fixed conjugacy class
Achab, Dehbia. « Fonctions zêta des représentations des algèbres de Jordan ». Paris 6, 1993. http://www.theses.fr/1993PA066287.
Texte intégralFichou, Goulwen. « Fonctions zêta réelles et équivalence de Nash après éclatements ». Habilitation à diriger des recherches, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00554877.
Texte intégralGoutet, Philippe. « Sur la factorisation des fonctions zêta des hypersurfaces de Dwork ». Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00440384.
Texte intégralEupherte, Rémy. « Quasi-motifs et fonctions zêta des courbes sur les corps finis ». Bordeaux 1, 2003. http://www.theses.fr/2003BOR1A002.
Texte intégralThe aim of this work is to interpret the zeta function of a curve C defined over a finite field in terms of the quasi-motives of the curve obtained after extension of the scalars to the algebraic closure of the ground field, in particular the Borel-Moore homology quasi-motive G. The Borel-Moore homology quasi-motive of a curve defined over an algebraically closed field is a very simple complex of length 2. In this work, a functor Tl correctly defined giving l-adic realization and a precise analysis of the action of the Frobenius on Tl(G) lead to a compact expression for the zeta function of the curve C, even if C is singular and non projective. This result and results of duality between the l-adic realizations of the quasi-motives allow one to establish the functional equation satisfied by the zeta function. At last, we give an interpretation of the rationality of the zeta function, by means of a kind of trace formula
Demangos, Luca. « Minoration de hauteurs canoniques et conjecture de Manin-Mumford ». Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10064/document.
Texte intégralWe divide this work in two different chapters having no relation between them. In the first chapter we propose a lower bound estimate of the canonical height on a certain family of Drinfeld modules having characteristic 0, depending by the dimension of these Drinfeld module algebraic points on the base function field (into a well-chosen algebraic closure). This will take us to deeply analyze the Lehmer problem on Drinfeld modules. In the second chapter we propose a strategy to approach the Manin-Mumford conjecture on uniformizable abelian T-modules, based on the new techniques introduced by J. Pila and U. Zannier for abelian varieties defined on a number field. We propose in particular a first step in such a direction by a new interpretation of the J. Pila and J. Wilkie’s work in order to obtain an higher bound estimate on the number of torsion points of a such T-module. This would be an important basis to a future development of this method, as in the classic case
Alaya, Jilani. « Formule sommatoire liée à certaines fonctions L d'Artin ». Paris 6, 1986. http://www.theses.fr/1986PA066041.
Texte intégralOmar, Samir. « Zéros des séries L et des fonctions zêta de corps de nombres ». Bordeaux 1, 2001. http://www.theses.fr/2001BOR12419.
Texte intégralNaud, Frédéric. « Dynamique sur des ensembles de Cantor et propriétés analytiques de fonctions zêta ». Bordeaux 1, 2003. http://www.theses.fr/2003BOR12715.
Texte intégralMotivated by the links between the analytic properties of dynamical zeta functions and the resonances of the Laplace operator for non-compact problems, we study two classes of zeta functions related to the geodesic flow (whose dynamics are axiom A) on some infinite volume manifolds where the non-wandering set is of Cantor type. In the first case (open billiards), we show tha for generic obstacles, the corresponding zeta function has an analytic continuation to a polynomially decreasing neighborhood of the line of absolute ocnergence. In the second case (hyperbolic convex co-compact surfaces), we show, for the Selberg zeta function, the existence of a zero free strip on the feft of the line of absolute convergence. This résult implies an exponential error term for the prime orbit theorem of the geodesic flow
Livres sur le sujet "Fonctions zêta des hauteurs"
Fonction Zêta des hauteurs des variétés toriques non déployées. Providence, R.I : American Mathematical Society, 2010.
Trouver le texte intégralChapitres de livres sur le sujet "Fonctions zêta des hauteurs"
Chambert-Loir, Antoine, et Yuri Tschinke. « Fonctions ZÊta Des Hauteurs Des Espaces Fibrés ». Dans Progress in Mathematics, 71–115. Basel : Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8368-9_4.
Texte intégralSerre, Jean-Pierre. « Formes modulaires et fonctions zêta p-adiques ». Dans Oeuvres - Collected Papers III, 95–172. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-39816-2_97.
Texte intégralSerre, Jean-Pierre. « Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures) ». Dans Springer Collected Works in Mathematics, 581–92. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-37726-6_87.
Texte intégralLouboutin, Stéphane. « Zéros réels des fonctions zêta et minorations de nombres de classes. Application à la majoration des discriminants de certains types de corps de nombres ». Dans Progress in Mathematics, 135–52. Boston, MA : Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4757-4273-2_9.
Texte intégral« Monodromie locale et fonctions Zêta des log schémas ». Dans Geometric Aspects of Dwork Theory, 983–1038. De Gruyter, 2004. http://dx.doi.org/10.1515/9783110198133.2.983.
Texte intégral