Thèses sur le sujet « Fonctions zêta »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Fonctions zêta ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Achab, Dehbia. « Fonctions zêta des représentations des algèbres de Jordan ». Paris 6, 1993. http://www.theses.fr/1993PA066287.
Texte intégralFichou, Goulwen. « Fonctions zêta réelles et équivalence de Nash après éclatements ». Habilitation à diriger des recherches, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00554877.
Texte intégralGoutet, Philippe. « Sur la factorisation des fonctions zêta des hypersurfaces de Dwork ». Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00440384.
Texte intégralBourqui, David. « Fonctions zêta des hauteurs des variétés toriques en caractéristique positive ». Université Joseph Fourier (Grenoble), 2003. https://tel.archives-ouvertes.fr/tel-00004008.
Texte intégralEupherte, Rémy. « Quasi-motifs et fonctions zêta des courbes sur les corps finis ». Bordeaux 1, 2003. http://www.theses.fr/2003BOR1A002.
Texte intégralThe aim of this work is to interpret the zeta function of a curve C defined over a finite field in terms of the quasi-motives of the curve obtained after extension of the scalars to the algebraic closure of the ground field, in particular the Borel-Moore homology quasi-motive G. The Borel-Moore homology quasi-motive of a curve defined over an algebraically closed field is a very simple complex of length 2. In this work, a functor Tl correctly defined giving l-adic realization and a precise analysis of the action of the Frobenius on Tl(G) lead to a compact expression for the zeta function of the curve C, even if C is singular and non projective. This result and results of duality between the l-adic realizations of the quasi-motives allow one to establish the functional equation satisfied by the zeta function. At last, we give an interpretation of the rationality of the zeta function, by means of a kind of trace formula
Eupherte, Rémy. « Quasi-motifs et fonctions zêta des courbes sur les corps finis ». Bordeaux 1, 2003. http://www.theses.fr/2003BOR12779.
Texte intégralThe aim of this work is to interpret the zeta function of a curve C defined over a finite field in terms of the quasi-motives of the curve obtained after extension of the scalars to the algebraic closure of the ground field, in particular the Borel-Moore homology quasi-motive G. The Borel-Moore homology quasi-motive of a curve defined over an algebraically closed field is a very simple complex of length 2. In this work, a functor Tl correctly defined giving l-adic realization and a precise analysis of the action of the Frobenius on Tl(G) lead to a compact expression for the zeta function of the curve C, even if C is singular and non projective. This result and results of duality between the l-adic realizations of the quasi-motives allow one to establish the functional equation satisfied by the zeta function. At last, we give an interpretation of the rationality of the zeta function, by means of a kind of trace formula
Velasquez, Castanon Oswaldo. « Sur la répartition des zéros de certaines fonctions méromorphes liées à la fonction zêta de Riemann ». Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13622/document.
Texte intégralWe deal with three problems related to the Riemann zeta function: 1) The establishment of conditions to determine the alignment and simplicity of most of the zeros of a function of the form f(s)=h(s)±h(2c-s), where h(s) is a meromorphic function and c a real number. To this end, we generalise the Hermite-Biehler theorem concerning the stability of entire functions. As an application, we obtain some results about the distribution of zeros of translations of the Riemann Zeta Function and L functions, and about certain integrals of Eisenstein series. 2) The study of the distribution of the zeros of the partial sums of the zeta function, and of some approximations issued from the Euler-Maclaurin formula. 3) The study of the meromorphic continuation and the natural boundary of a class of Euler products, which includes a Dirichlet series used in the study of the distribution of values of the Euler totient
Campesato, Jean-Baptiste. « Une fonction zêta motivique pour l'étude des singularités réelles ». Thesis, Nice, 2015. http://www.theses.fr/2015NICE4104/document.
Texte intégralThe main purpose of this thesis is to study real singularities using arguments from motivic integration as initiated by S. Koike and A. Parusiński and then continued by G. Fichou. In order to classify real singularities, T.-C. Kuo introduced the blow-analytic equivalence which is an equivalence relation on real analytic germs without moduli for isolated singularities. This notion is closely related to the notion of arc-analytic maps introduced by K. Kurdyka, thus it is natural to adapt arguments from motivic integration to the study of the relation. The difficulty lies in finding efficient ways to prove that two germs are equivalent and in constructing invariants that distinguish germs which are not in the same class. We focus on the blow-Nash equivalence, a more algebraic notion which was introduced by G. Fichou. The first part of this thesis consists in an inverse theorem for blow-Nash maps. Under certain assumptions, this ensures that the inverse of a homeomorphism which is blow-Nash is also blow-Nash. Such maps are involved in the definition of the blow-Nash equivalence. In the second part, we associate a power series to an analytic germ, called the zeta function of the germ. This construction generalizes the zeta functions of Koike-Parusiński and Fichou. Furthermore, it admits a convolution formula while being an invariant for the blow-Nash equivalence
Omar, Samir. « Zéros des séries L et des fonctions zêta de corps de nombres ». Bordeaux 1, 2001. http://www.theses.fr/2001BOR12419.
Texte intégralNaud, Frédéric. « Dynamique sur des ensembles de Cantor et propriétés analytiques de fonctions zêta ». Bordeaux 1, 2003. http://www.theses.fr/2003BOR12715.
Texte intégralMotivated by the links between the analytic properties of dynamical zeta functions and the resonances of the Laplace operator for non-compact problems, we study two classes of zeta functions related to the geodesic flow (whose dynamics are axiom A) on some infinite volume manifolds where the non-wandering set is of Cantor type. In the first case (open billiards), we show tha for generic obstacles, the corresponding zeta function has an analytic continuation to a polynomially decreasing neighborhood of the line of absolute ocnergence. In the second case (hyperbolic convex co-compact surfaces), we show, for the Selberg zeta function, the existence of a zero free strip on the feft of the line of absolute convergence. This résult implies an exponential error term for the prime orbit theorem of the geodesic flow
Rivoal, Tanguy. « Propriétés diophantiennes de la fonction zêta de Riemann aux entiers impairs ». Phd thesis, Université de Caen, 2001. http://tel.archives-ouvertes.fr/tel-00004519.
Texte intégralAlaya, Jilani. « Formule sommatoire liée à certaines fonctions L d'Artin ». Paris 6, 1986. http://www.theses.fr/1986PA066041.
Texte intégralReydy, Carine. « Étude d'invariants des germes de courbes planes à l'aide des diagrammes de Newton ». Bordeaux 1, 2002. http://www.theses.fr/2002BOR12619.
Texte intégralMinguez, Espallargas Alberto. « Correspondance de Howe l-modulaire : paires duales de type II ». Paris 11, 2006. http://www.theses.fr/2006PA112229.
Texte intégralTuitman, Jan. « Counting points in families of nondegenerate curves ». Paris 6, 2010. http://www.theses.fr/2010PA066247.
Texte intégralKadiri, Habiba. « Une région explicite sans zéro pour les fonctions L de Dirichlet ». Lille 1, 2002. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2002/50376-2002-279-280.pdf.
Texte intégralHajli, Mounir. « Théorie spectrale pour certaines métriques singulières et géométrie d'Arakelov ». Paris 6, 2012. http://www.theses.fr/2012PA066507.
Texte intégralIn this thesis we are interested in the holomorphic analytictorsion and its extension (in the setting of Arakelov geometry)to integrable line bundles on a compact Riemann surface. We propose two different approaches: The first approach isan approximation process which uses Bismut, Gillet , Soulé anomaly formula. The second one introduces the notion of singular Laplacian which extend the classical one. We apply both approaches to line bundles on \mathbb{P}^1 endowedwith their canonical metric. By direct computations, we establish that both approaches define the same notion of analytic torsion in the case of canonical metrics. We propose a general spectral theory which take into account this kind of metrics and generalizes the classical theory for line bundles on compact Riemann surfaces equipped with \mathcal{C}^\infty. As a consequence, we provide a new proof or the previous results, obtained by direct computations
Henocq, Thierry. « Jacobienne et fonction Zeta des courbes algébriques. Décodage des codes géométriques ». Toulouse 3, 1994. http://www.theses.fr/1994TOU30185.
Texte intégralZykin, Alexey. « Propriétés asymptotiques des corps globaux ». Aix-Marseille 2, 2009. http://theses.univ-amu.fr.lama.univ-amu.fr/2009AIX22006.pdf.
Texte intégralThere are two main parts in this thesis. The first part is devoted to the study of asymptotic properties of zeta functions, L-functions, global fields and varieties over these fields. In the first chapter, we prove a generalization of the Brauer-Siegel theorem to the case of families of almost normal number fields. In the second chapter, we study the asymptotic behaviour of the logarithmic derivatives of zeta functions in families of global fields. In the third, chapter we give an overview of possible generalizations of the classical Brauer-Siegel theorem. In the same chapter, we prove a version of the Brauer-Siegel theorem for varieties over finite fields. The fourth chapter is devoted to the study of the distribution of zeroes of L-functions of modular forms. In the fifth chapter, we study the asymptotic properties of families of zeta and L-functions over finite fields in the context of the following problems : the basic inequality, the results of the Brauer-Siegel type and the distribution of zeroes. The aim of the second part is to obtain a characterization of Jacobians among principally polarized abelian varieties of dimension 3; which gives an answer to a question asked by J. -P. Serre. We also obtain a new proof of Klein's formula which connects a certain Siegel modular form to the discriminant of plane quartics
Boutteaux, Gérard. « Le problème du nombre de classes 1 pour les corps à multiplication complexe sextiques non galoisiens ». Caen, 2003. http://www.theses.fr/2003CAEN2045.
Texte intégralBessassi, Sofiène. « Borne sur le degré des corps à multiplication complexe principaux ». Caen, 2001. http://www.theses.fr/2001CAEN2051.
Texte intégralRedouaby, Marouan. « Sur la méthode de Van Der Corput pour les sommes d'exponentielles ». Nancy 1, 1999. http://www.theses.fr/1999NAN10224.
Texte intégralIn modern methods for analytic exponential sums theory, the A and B Van der Corput's process occur in various forms where more accuracy is needed. The' first part of this thesis achieves a complete study of B process for single exponential sums or sums with a parameter. In the second part, Fouvry and Iwaniec's method for multiple exponential sums with monomial is combined with A and B Van der Corput's process to get new bounds for single exponential sums which complete Huxley's table. The third part gives an accurate estimation for single oscillating integrals when the critical point is close to the endpoints of the integration interval which applies to mean values of oscillating integrals such as those that occur in the study of multiple B transform
Lebacque, Philippe [Jean-Georges]. « Sur quelques propriétés asymptotiques des corps globaux ». Aix-Marseille 2, 2007. http://theses.univ-amu.fr.lama.univ-amu.fr/2007AIX22020.pdf.
Texte intégralIn this thesis we study several aspects of infinite global fields (IGF). The first chapter is devoted to elementary properties of their invariants, to the notion of asymptotically good families of global fields, and to their composita. In the second chapter we try to control the invariants through their support, proving that, given a finite set of invariants, we can construct an IGF having all this invariants equal to zero and another having all this invariants positive. We are also interested in the default of IGF, proving that it is increasing for inclusion of IGF. The third chapter is the study of Mertens theorem and its link to generalised Brauer–Siegel theorem. Proving an explicit version of the first one, we deduce an explicit version of the second one under the Generalised Riemann Hypothesis (GRH), and recover it without GRH
Pigeon, David. « Les D-modules arithmétiques dans le cas des p-bases et un algorithme pour le calcul de fonctions zêta ». Caen, 2014. http://www.theses.fr/2014CAEN2013.
Texte intégralThe theory of arithmetic D-modules was developed by Pierre Berthelot, based on the main ideas of Grothendieck and Mebkhout, who were the first to see the D-modules as a new cohomological approach. The primary aim of my thesis was to generalize the local descriptions of arithmetic D-modules in the smooth case, found by Pierre Berthelot. We want to integrate recent case studies, in particular from Richard Crew, where he studies formally smooth schemes. For that purpose, we generalize the notion of relatively perfect to the cases of formal schemes and obtain in this context a similar description to the smooth case. In a second step, we give an algorithm which allows calculating the zeta function of certain varieties, which are the extension of a variety that is already known to calculate the zeta function
Gigault, de Crisenoy Marc. « Valeurs aux T-uplets d'entiers négatifs de séries zêtas multivariables associées à des polynômes de plusieurs variables ». Caen, 2003. http://www.theses.fr/2003CAEN2056.
Texte intégralkadiri, habiba. « Une région explicite sans zéro pour les fonctions L de Dirichlet ». Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2002. http://tel.archives-ouvertes.fr/tel-00002695.
Texte intégralHaloui, Safia-Christine. « Sur le nombre de points rationels des variétés abéliennes sur les corps finis ». Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22038/document.
Texte intégralThe characteristic polynomial of an abelian variety over a finite field is defined to be the characteristic polynomial of its Frobenius endomorphism. The first part of this thesis is devoted to the study of the characteristic polynomials of abelian varieties of small dimension. We describe the set of polynomials which occur in dimension 3 and 4; the analogous problem for elliptic curves and abelian surfaces has been solved by Deuring, Waterhouse and Rück.In the second part, we give upper and lower bounds on the number of points on abelian varieties over finite fields. Next, we give lower bounds specific to Jacobian varieties. We also determine exact formulas for the maximum and minimum number of points on Jacobian surfaces
Amandine, Saldana. « Séries de Dirichlet à deux variables et distribution des valeurs de fonctions arithmétiques ». Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2009. http://tel.archives-ouvertes.fr/tel-00426287.
Texte intégralPrinzis, Raymond. « Traces résiduelles et asymptotique du spectre d'opérateurs pseudo-différentiels ». Lyon 1, 1995. http://www.theses.fr/1995LYO19004.
Texte intégralAubry, Yves. « Variétés algébriques et corps de fonctions sur un corps fini ». Habilitation à diriger des recherches, Aix-Marseille Université, 2002. http://tel.archives-ouvertes.fr/tel-00977396.
Texte intégralSaldana, Amandine. « Séries de Dirichlet à deux variables et distribution des valeurs de fonctions arithmétiques ». Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10026/document.
Texte intégralWe deal with two problems related to Dirichlet series. First we study the analytic continuation of a class of Dirichlet series with two variables: g(s_1,s_2,a,r) = sum_d=1 r(d) / a(d)s1ds2, where a(d) is a positive multiplicative function and r(d) is a multiplicative function. We prove, under suitable hypotheses, a general Theorem which allows us to approach this Dirichlet series by a known series, up to another series for which we get very precise upper bounds. Then we use this tool to get quantitative results on the distribution of values of arithmetical functions. Under suitable hypotheses on the functions a(d) and r(d), we determine lim_x?8 1/X sum_d
Chambille, Saskia. « Exponential sums, cell decomposition and p-adic integration ». Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I023/document.
Texte intégralIn this thesis we study p-adic exponential sums and integrals using ideas from model theory and geometry. The first part of this thesis deals with exponential sums in P-minimal fields. The second part discusses estimates for the asymptotic behaviour of exponential sums over p-adic fields. Our work on P-minimal fields starts with the proof of a cell decomposition theorem that holds in all P-minimal fields, i.e., independently of the existence of definable Skolem functions. For P-minimal fields that lack these functions, we introduce the notion of regular clustered cells. This notion is close to the classical notion of p-adic cells, that was introduced by Denef. Our cell decomposition uses both classical cells and regular clustered cells. Next, we extend the notion of exponential-constructible functions, already defined in the semi-algebraic and subanalytic setting, to all P-minimal fields. We do this by enlarging the algebras of constructible functions with exponential sums. Using our cell decomposition theorem we prove that exponential-constructible functions are stable under integration. This means that the act of integrating an exponential-constructible function over some of its variables produces an exponential-constructible function in the other variables. In our work on estimates for the asymptotic behaviour of exponential sums we prove the Igusa, Denef-Sperber and Cluckers-Veys conjectures for polynomials with log-canonical threshold at most one half. We give two different proofs, one using motivic integration, and the other one using the Igusa zeta functions
Vidal, Isabelle. « Contributions à la cohomologie étale des schémas et des log-schémas ». Paris 11, 2001. http://www.theses.fr/2001PA112246.
Texte intégralThis work consists of two independent parts. The first one (chaps. I through III) deals with logarithmic geometry. In chap. I we define the logarithmic fundamental group of an fs log scheme and in the proper and log smooth case over the spectrum of a henselian dvr we prove that it satisfies a specialization theorem à la Grothendieck. We then consider a standard logarithmic point s of characteristic p. In chap. II we show that if X is an fs log scheme, separated and of finite type over s, the l-adic Kummer etale cohomology (l different from p) of the log geometric fiber of X finitely generated and endowed with a quasi-unipotent action of the logarithmic inertia, and we study the exponents. In chap. III, for k finite with q elements we define, à la Rapoport, the l-adic Kummer etale semi-simple zeta function of X. We prove it is rational and independent of l. In the proper, log smooth, vertical, Cartier type case we interpret it in terms of log crystalline cohomology and describe its zeroes and poles on the p-adic annuli of radius an integral power of q. .
Gautier-Baudhuit, Franck. « Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative ». Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC042/document.
Texte intégralThe thesis is about a families of zeta functions (Dirichlet series) that may be associated to certain algebras of Hilbert space operators. In this thesis, the main question in studying these zeta functions is to establish their meromorphic continuation from a half-plane in the complex plane to the full plane.Following an idea of Nigel Higson, we develop, in part I, a method for proving the existence of a meromorphic continuation for some spectral zeta functions. The method is based on algebras of generalized differential operators. The more important tool is the reduction sequence. The main theorem states, under some conditions, the existence of a meromorphic continuation, a localization of the poles in supports of arithmetic sequences and an upper bound of their order. A formulation of the method into the framework of Connes and Moscovici, the regular spectral triples, setting in part II. In the third part, we give an application for zeta functions associate to a Laplace-type operator on a smooth, closed manifold. This example was initially treated in this way by Nigel Higson in 2006. We give another application for zeta functions associate to the noncommutative torus. In part IV, using the work of Dominique Manchon on algebras of pseudodifferential operators associated to unitary representations of nilpotent Lie group, we construct new spectral triples. In part V, set the main application of the method. We applicate the reduction method for some algebras of generalized differential operators, arising from a Kirillov representation of a class of nilpotent Lie algebras
Sankari, Abdulnasser. « Rationalité de la fonction zéta d'un système sofique et extension du logiciel automate ». Rouen, 1995. http://www.theses.fr/1995ROUES015.
Texte intégralJarossay, David. « Multizêtas p-adiques et multizêtas finis ». Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC208.
Texte intégralThis thesis concerns the pro-unipotent fundamental group of the projective line minus three points, defined by Deligne in 1989. We consider more specifically its cristalline Frobenius and its "Knizhnik-Zamolodchikov" connection. The goal is to understand its p-adic periods, that is to say the p-adic analogues of multiple zeta values. The study also leads to a notion of "finite multiple zeta values" ; it enlightens another notion of finite multiple zeta values defined by Zagier in 2011. The parts I and II concern p-adic multiple zeta values. We give several ways, one "direct" (part I) and two "indirect" (part II), to compute them. It enables to discover as well certain properties of multiple harmonic sums. The part II leads to, among other things, the definition of the notion of finite multiple zeta values evoked above. These are elements of the product of all Zp's ; they can be expressed in terms of p-adic multiple zeta values, and vice versa. They must be seen as a substitute to p-adic multiple zeta values, which have the advantage to be given by very simple explicit formulas, and whose properties reflect those of p-adic multiple zeta values. The part III is mostly a study of the algebraic properties of finite multiple zeta values, and of other related numbers. We justify the statement that they are variants of multiple zeta values, by showing that they satisfy variants of the standard algebraic properties of multiple zeta values. At the end of part III, we obtain a new series expansion of p-adic zeta values. The three parts also contain other annex results
Bel, Pierre. « Fonction Zêta de Hurwitz p-adique et irrationalité ». Bordeaux 1, 2008. http://www.theses.fr/2008BOR16023.
Texte intégralNguema, Ndong Florent. « Étude de la dynamique symbolique des développements en base négative, système de Lyndon ». Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2276/document.
Texte intégralThis work deals with the study of the Lyndon systems (for alternate order) and the symbolicdynamics of the expansions of real numbers in negative base. For a given real ß > 1, we showthe intrinsic ergodicity of the —ß-shift using a positive recurring prefix code and we determine theassociated zeta function. We study the conditions for which the —ß-shift admits the specificationproperty.Moreover, when ß is less than golden ratio, the language of the —ß-shift contains intransitive words.These words lead to some cylinders negligible with respect to the measure with maximal entropy.In the interval Iß=[—ß/(ß+1),1/(ß+1)[, these cylinders correspond to some gaps: small interval withmeasure zero (with respect to the unique ergodic measure on Iß). We make a detailed study ofthese gaps.Otherwise, we study the uniqueness of the number systems of integers in negative base and weshow that to each Lyndon word corresponds to a such system
Iezzi, Annamaria. « Nombre de points rationnels des courbes singulières sur les corps finis ». Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4027/document.
Texte intégralIn this PhD thesis, we focus on some issues about the maximum number of rational points on a singular curve defined over a finite field. This topic has been extensively discussed in the smooth case since Weil's works. We have split our study into two stages. First, we provide a construction of singular curves of prescribed genera and base field and with many rational points: such a construction, based on some notions and tools from algebraic geometry and commutative algebra, yields a method for constructing, given a smooth curve X, another curve X' with singularities, such that X is the normalization of X', and the added singularities are rational on the base field and with the prescribed singularity degree. Then, using a Euclidian approach, we prove a new bound for the number of closed points of degree two on a smooth curve defined over a finite field.Combining these two a priori independent results, we can study the following question: when is the Aubry-Perret bound (the analogue of the Weil bound in the singular case) reached? This leads naturally to the study of the properties of maximal curves and, when the cardinality of the base field is a square, to the analysis of the spectrum of their genera
Morin, Baptiste. « Sur le topos Weil-étale d'un corps de nombres ». Bordeaux 1, 2008. http://www.theses.fr/2008BOR13590.
Texte intégralNguyen, Huu Kien. « La rationalité uniforme de la série Poincaré de relations d'équivalence p-adiques et la conjecture d'Igusa sur des sommes exponentielles ». Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I020/document.
Texte intégralThe results in the rationality of Poincaré series associated with definable family of equivalence relations over valued fields was researched by Denef. This problem has relation with the existence of elimination of imaginaries theorem for theories of valued fields (see the result of Hrushovski, Martin and Rideau). Motivic integration theory was born helps us to show the uniform dependence of the rationality of Poincaré series on p-adic local fields. In the chapter 1 of this thesis, I extend the result on p-uniform rationality of Poincaré series associated with definable family of equivalence relations in some theories of valued field in which elimination of imaginaries has not been proved yet, for example theories on analytic structures. My method is that I extend the motivic integration theory for constructible motivic functions in two papers of Cluckers and Loeser to rational constructible motivic functions. Another classical problem of number theory is estimation of exponential sums. Exponential sums modulo pm was studied by Igusa, and for a fixed prime p, he gave a deep relation between estimation of exponential sums modulo pm and poles of Igusa local zeta function. Igusa also showed that a uniform estimation in p and m of exponential sums modulo pm could give an Poisson summation formula of Siegel-Weil type. By this motivation, many researches tried to give the best uniform upper bound of exponential sums modulo pm. In the chapters 2, 3, 4, we will try to obtain some uniform versions for upper bound of exponential sums modulo pm given by log-canonical threshold or Newton polyhedron due to Igusa's, Denef-Sperber's and Cluckers-Veys's conjectures
Wang, Xiaozong. « On the Bertini theorem in Arakelov geometry ». Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM015.
Texte intégralThe purpose of this thesis is to study the geometric properties of the arithmetic varieties. More precisely, we are interested in the existence of regular projective subschemes of a regular projective arithmetic variety. First we extend a result of Poonen. In particular, we prove that given a smooth projective variety X over a finite field and an ample line bundle L on X, the proportion of global sections of L⊗d which has a smooth divisor tends to ζx(1+dim X)⁻¹ when d tends to infinity. Then we show that for a regular projective arithmetic variety X equipped with an ample hermitian line bundle L, the proportion of global sections of supremum norm strictly smaller than 1 of L⊗d whose divisor does not have a singular point on the fiber Xp over any prime p ≤ eᵋᵈ tends to ζx(1+dim X)⁻¹ as d tends to infinity
Damamme, Gilles. « Transcendance de la fonction zêta de Carlitz par la méthode de Wade ». Caen, 1990. http://www.theses.fr/1990CAEN2003.
Texte intégralGozé, Vincent. « Une version effective du théorème des nombres premiers de Wen Chao Lu ». Electronic Thesis or Diss., Littoral, 2024. http://www.theses.fr/2024DUNK0725.
Texte intégralThe prime number theorem, first proved in 1896 using complex analysis, gives the main term for the asymptotic distribution of prime numbers. It was not until 1949 that the first so-called "elementary" proof was published: it rests strictly on real analysis.In 1999, Wen Chao Lu obtained by an elementary method an error term in the prime number theorem very close to the one provided by the zero-free region of the Riemann zeta function given by La Vallée Poussin at the end of the 19th century. In this thesis, we make Lu's result explicit in order, firstly, to give the best error term obtained by elementary methods so far, and secondly, to explore the limits of his method
Fichou, Goulwen. « Nombres de Betti virtuels des ensembles symétriques par arcs et équivalence de Nash après éclatements ». Phd thesis, Université d'Angers, 2003. http://tel.archives-ouvertes.fr/tel-00004279.
Texte intégralWinckler, Bruno. « Intersection arithmétique et problème de Lehmer elliptique ». Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0233/document.
Texte intégralIn this thesis we consider the problem of lower bounds for the canonical height onelliptic curves, aiming for the conjecture of Lehmer. Our main diophantine result isan explicit version of a theorem of Laurent (who proved this conjecture for ellipticcurves with CM up to a " exponent) using arithmetic intersection, enlightening thedependence with parameters linked to the elliptic curve ; such a result can be motivatedby the conjecture of Lang, hoping for a lower bound proportional to, roughly,the Faltings height of the curve.Nevertheless, our dissertation begins with a part dedicated to a completely explicitversion of the density theorem of Chebotarev, along the lines of a previous workdue to Lagarias and Odlyzko, which will be crucial to investigate the elliptic Lehmerproblem. We also obtain upper bounds for Siegel zeros, and for the smallest primeideal whose Frobenius is in a fixed conjugacy class
Bùi, Văn Chiến. « Développement asymptotique des sommes harmoniques ». Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCD006/document.
Texte intégralApproaching special numbers as harmonic sums or polyzetas (multiple zetavalues) in the spirit of combinatorics, we first focus on the study of algebraic structureson words by introducing the definition of a product on words, called q-stuffle product, acommon generalisation of shuffle and quasi-shuffle products, which allows us to completelyconstruct Hopf algebras in duality. Simutaneously, we establish recurrent formulas inorder to compute bases in duality, containing transcendence bases tied to Lyndon wordson which harmonic sums, the polyzetas and polylogarithms are indexed. We use them torepresent the factorization of a diagonal noncommutative generating series. In this respect,we determine asymptotic expansions of harmonic sums thanks to their generatingseries and to Euler Maclaurin formula. We also establish a bridge equation of polyzetas,which appear as fini parts in asymptotic expansions of harmonic sums and of polylogarithms,linking two algebraic structures. Through identification of local coordinates of thisequation, we can deduce homogenous, in weight, polynomial relations among polyzetasindexed on the bases.We also give algorithms and a package in Maple which, in practice,allowed us to find results and examples within this thesis
Sagnier, Aurélien. « Un site arithmétique de type connes-consani pour les corps quadratiques imaginaires de nombre de classes 1 ». Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC190/document.
Texte intégralWe construct, for imaginary quadratic number fields with class number 1, an arithmetic site of Connes-Consani type. The main difficulty here is that the constructions of Connes and Consani and part of their results strongly rely on the natural order existing on real numbers which is compatible with basic arithmetic operations. Of course nothing of this sort exists in the case of imaginary quadratic number fields with class number 1. We first define what we call arithmetic site for such number fields, we then calculate the points of those arithmetic sites and we express them in terms of the ad\`eles class space considered by Connes to give a spectral interpretation of zeroes of Hecke L functions of number fields. We get therefore that for a fixed imaginary quadratic number field with class number 1, that the points of our arithmetic site are related to the zeroes of the Dedekind zeta function of the number field considered and to the zeroes of some Hecke L functions. We then study the relation between the spectrum of the ring of integers of the number field and the arithmetic site. Finally we construct the square of the arithmetic site
Dauguet, Simon. « Généralisations du critère d’indépendance linéaire de Nesterenko ». Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112085/document.
Texte intégralThis Ph.D. thesis lies in the path opened by Apéry who proved the irrationality of ζ(3) andalready followed by Ball-Rivoal who proved that there are infinitely many odd integers at which Riemann zeta function takes irrational values. A fundamental tool in the proof of Ball-Rivoal is Nesterenko’s linear independence criterion. This criterion has been generalized by Fischler and Zudilin to use common divisors of the coefficients of linear forms, under some restrictive assumptions. Then Fischler gave another generalization for simultaneous approximations (instead of small Z-linear combinations).In this Ph.D. thesis, we improve this last result by greatly weakening the assumption on thedivisors. We prove also an analogous linear independence criterion in the spirit of Siegel. Inanother part joint with Zudilin, we construct simultaneous linear approximations to ζ(2) and ζ(3) using hypergeometric identitites. These linear approximations allow one to prove at thesame time the irrationality of ζ(2) and that of ζ(3). Then, using a criterion from the previouspart, we deduce a lower bound on Z-linear combinations of 1, ζ(2) and ζ(3), under somestrong divisibility hypotheses on the coefficients (so that the Q-linear independence of thesethree numbers still remains an open problem)
Kpognon, Kodjo Egadédé. « Singularités des courbes planes, module des dérivations et schéma des arcs ». Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S111/document.
Texte intégralTo any algebraic variety one can associate several algebraic-geometric objets which in particular provide information on the singularities of the variety. This thesis deals with the interaction between the study of singularities, arc spaces and derivations module in the context of affine algebraic plane curves. Using a theorem of Alain Hénaut, we show that quasi-homogeneous incomplete d-webs are linearizable for d > 3. Finally, in the last chapter, this thesis intoduces the formalism of motivic zêta function of a local 1-form