Articles de revues sur le sujet « Fork reversal »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Fork reversal ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Liu, Wenpeng, Yuichiro Saito, Jessica Jackson, et al. "RAD51 bypasses the CMG helicase to promote replication fork reversal." Science 380, no. 6643 (2023): 382–87. http://dx.doi.org/10.1126/science.add7328.
Texte intégralSewilam, Reham S., Megan R. Reed, and Robert L. Eoff. "Abstract 1488: DNA polymerase kappa slows replication fork speed by promoting fork reversal in glioblastoma." Cancer Research 85, no. 8_Supplement_1 (2025): 1488. https://doi.org/10.1158/1538-7445.am2025-1488.
Texte intégralBhat, Kamakoti P., and David Cortez. "RPA and RAD51: fork reversal, fork protection, and genome stability." Nature Structural & Molecular Biology 25, no. 6 (2018): 446–53. http://dx.doi.org/10.1038/s41594-018-0075-z.
Texte intégralFierro-Fernandez, M., P. Hernandez, D. B. Krimer, A. Stasiak, and J. B. Schvartzman. "Topological locking restrains replication fork reversal." Proceedings of the National Academy of Sciences 104, no. 5 (2007): 1500–1505. http://dx.doi.org/10.1073/pnas.0609204104.
Texte intégralQuinet, Annabel, Delphine Lemaçon, and Alessandro Vindigni. "Replication Fork Reversal: Players and Guardians." Molecular Cell 68, no. 5 (2017): 830–33. http://dx.doi.org/10.1016/j.molcel.2017.11.022.
Texte intégralThakar, Tanay, and George-Lucian Moldovan. "The emerging determinants of replication fork stability." Nucleic Acids Research 49, no. 13 (2021): 7224–38. http://dx.doi.org/10.1093/nar/gkab344.
Texte intégralLiu, W., A. Krishnamoorthy, R. Zhao, and D. Cortez. "Two replication fork remodeling pathways generate nuclease substrates for distinct fork protection factors." Science Advances 6, no. 46 (2020): eabc3598. http://dx.doi.org/10.1126/sciadv.abc3598.
Texte intégralBatenburg, Nicole L., Sofiane Y. Mersaoui, John R. Walker, et al. "Cockayne syndrome group B protein regulates fork restart, fork progression and MRE11-dependent fork degradation in BRCA1/2-deficient cells." Nucleic Acids Research 49, no. 22 (2021): 12836–54. http://dx.doi.org/10.1093/nar/gkab1173.
Texte intégralTorres, Rubén, Carolina Gándara, Begoña Carrasco, Ignacio Baquedano, Silvia Ayora, and Juan C. Alonso. "DisA Limits RecG Activities at Stalled or Reversed Replication Forks." Cells 10, no. 6 (2021): 1357. http://dx.doi.org/10.3390/cells10061357.
Texte intégralLe Masson, Marie, Zeynep Baharoglu, and Bénédicte Michel. "ruvAandruvBmutants specifically impaired for replication fork reversal." Molecular Microbiology 70, no. 2 (2008): 537–48. http://dx.doi.org/10.1111/j.1365-2958.2008.06431.x.
Texte intégralDe Septenville, Anne L., Stéphane Duigou, Hasna Boubakri, and Bénédicte Michel. "Replication Fork Reversal after Replication–Transcription Collision." PLoS Genetics 8, no. 4 (2012): e1002622. http://dx.doi.org/10.1371/journal.pgen.1002622.
Texte intégralZellweger, Ralph, Damian Dalcher, Karun Mutreja, et al. "Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells." Journal of Cell Biology 208, no. 5 (2015): 563–79. http://dx.doi.org/10.1083/jcb.201406099.
Texte intégralKrishnamoorthy, Archana, Jessica Jackson, Taha Mohamed, Madison Adolph, Alessandro Vindigni, and David Cortez. "RADX prevents genome instability by confining replication fork reversal to stalled forks." Molecular Cell 81, no. 14 (2021): 3007–17. http://dx.doi.org/10.1016/j.molcel.2021.05.014.
Texte intégralThangavel, Saravanabhavan, Matteo Berti, Maryna Levikova, et al. "DNA2 drives processing and restart of reversed replication forks in human cells." Journal of Cell Biology 208, no. 5 (2015): 545–62. http://dx.doi.org/10.1083/jcb.201406100.
Texte intégralCouch, Frank B., and David Cortez. "Fork reversal, too much of a good thing." Cell Cycle 13, no. 7 (2014): 1049–50. http://dx.doi.org/10.4161/cc.28212.
Texte intégralSogo, J. M. "Fork Reversal and ssDNA Accumulation at Stalled Replication Forks Owing to Checkpoint Defects." Science 297, no. 5581 (2002): 599–602. http://dx.doi.org/10.1126/science.1074023.
Texte intégralCotta-Ramusino, Cecilia, Daniele Fachinetti, Chiara Lucca, et al. "Exo1 Processes Stalled Replication Forks and Counteracts Fork Reversal in Checkpoint-Defective Cells." Molecular Cell 17, no. 1 (2005): 153–59. http://dx.doi.org/10.1016/j.molcel.2004.11.032.
Texte intégralJain, Chetan K., Swagata Mukhopadhyay, and Agneyo Ganguly. "RecQ Family Helicases in Replication Fork Remodeling and Repair: Opening New Avenues towards the Identification of Potential Targets for Cancer Chemotherapy." Anti-Cancer Agents in Medicinal Chemistry 20, no. 11 (2020): 1311–26. http://dx.doi.org/10.2174/1871520620666200518082433.
Texte intégralWarren, Garrett, Richard Stein, Hassane Mchaourab, and Brandt Eichman. "Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal." International Journal of Molecular Sciences 19, no. 10 (2018): 3049. http://dx.doi.org/10.3390/ijms19103049.
Texte intégralGrompone, Gianfranco, Dusko Ehrlich, and Bénédicte Michel. "Cells defective for replication restart undergo replication fork reversal." EMBO reports 5, no. 6 (2004): 607–12. http://dx.doi.org/10.1038/sj.embor.7400167.
Texte intégralAtkinson, J., and P. McGlynn. "Replication fork reversal and the maintenance of genome stability." Nucleic Acids Research 37, no. 11 (2009): 3475–92. http://dx.doi.org/10.1093/nar/gkp244.
Texte intégralBhattacharjee, Somendra M. "Interfacial instability and DNA fork reversal by repair proteins." Journal of Physics: Condensed Matter 22, no. 15 (2010): 155102. http://dx.doi.org/10.1088/0953-8984/22/15/155102.
Texte intégralSingleton, Martin R., Sarah Scaife, and Dale B. Wigley. "Structural Analysis of DNA Replication Fork Reversal by RecG." Cell 107, no. 1 (2001): 79–89. http://dx.doi.org/10.1016/s0092-8674(01)00501-3.
Texte intégralOlavarrieta, L. "Supercoiling, knotting and replication fork reversal in partially replicated plasmids." Nucleic Acids Research 30, no. 3 (2002): 656–66. http://dx.doi.org/10.1093/nar/30.3.656.
Texte intégralGraham, Ambassador Thomas, and Douglas B. Shaw. "Nearing a fork in the road: Proliferation or nuclear reversal?" Nonproliferation Review 6, no. 1 (1998): 70–76. http://dx.doi.org/10.1080/10736709808436736.
Texte intégralRay Chaudhuri, Arnab, Yoshitami Hashimoto, Raquel Herrador, et al. "Topoisomerase I poisoning results in PARP-mediated replication fork reversal." Nature Structural & Molecular Biology 19, no. 4 (2012): 417–23. http://dx.doi.org/10.1038/nsmb.2258.
Texte intégralChen, Bo-Ruei, Annabel Quinet, Andrea K. Byrum, et al. "XLF and H2AX function in series to promote replication fork stability." Journal of Cell Biology 218, no. 7 (2019): 2113–23. http://dx.doi.org/10.1083/jcb.201808134.
Texte intégralKhanduja, Jasbeer Singh, and K. Muniyappa. "Functional Analysis of DNA Replication Fork Reversal Catalyzed byMycobacterium tuberculosisRuvAB Proteins." Journal of Biological Chemistry 287, no. 2 (2011): 1345–60. http://dx.doi.org/10.1074/jbc.m111.304741.
Texte intégralNeelsen, Kai J., and Massimo Lopes. "Replication fork reversal in eukaryotes: from dead end to dynamic response." Nature Reviews Molecular Cell Biology 16, no. 4 (2015): 207–20. http://dx.doi.org/10.1038/nrm3935.
Texte intégralAmunugama, Ravindra, Smaranda Willcox, R. Alex Wu, et al. "Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading." Cell Reports 23, no. 12 (2018): 3419–28. http://dx.doi.org/10.1016/j.celrep.2018.05.061.
Texte intégralMutreja, Karun, Jana Krietsch, Jeannine Hess, et al. "ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links." Cell Reports 24, no. 10 (2018): 2629–42. http://dx.doi.org/10.1016/j.celrep.2018.08.019.
Texte intégralMayle, Ryan, Lance Langston, Kelly R. Molloy, Dan Zhang, Brian T. Chait, and Michael E. O’Donnell. "Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression." Proceedings of the National Academy of Sciences 116, no. 3 (2018): 798–803. http://dx.doi.org/10.1073/pnas.1819107116.
Texte intégralQuinet, Annabel, Stephanie Tirman, Jessica Jackson, et al. "PRIMPOL-Mediated Adaptive Response Suppresses Replication Fork Reversal in BRCA-Deficient Cells." Molecular Cell 77, no. 3 (2020): 461–74. http://dx.doi.org/10.1016/j.molcel.2019.10.008.
Texte intégralGuarino, Estrella, Israel Salguero, Alfonso Jiménez-Sánchez, and Elena C. Guzmán. "Double-Strand Break Generation under Deoxyribonucleotide Starvation in Escherichia coli." Journal of Bacteriology 189, no. 15 (2007): 5782–86. http://dx.doi.org/10.1128/jb.00411-07.
Texte intégralHonda, Masayoshi, Emeleeta A. Paintsil, and Maria Spies. "RAD52 DNA Repair Protein is a Gatekeeper that Protects DNA Replication Forks from Regression by Fork Reversal Motors." Biophysical Journal 118, no. 3 (2020): 160a. http://dx.doi.org/10.1016/j.bpj.2019.11.988.
Texte intégralShao, Jieya, Mari Iwase, Rong Xu, and Shuyang Lin. "Abstract B017: VCP extracts the chromatin remodeler SNF2H from nascent DNA to stabilize stressed replication forks." Cancer Research 84, no. 1_Supplement (2024): B017. http://dx.doi.org/10.1158/1538-7445.dnarepair24-b017.
Texte intégralSaldanha, Joanne, Julie Rageul, Jinal A. Patel, and Hyungjin Kim. "The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork." International Journal of Molecular Sciences 24, no. 13 (2023): 10488. http://dx.doi.org/10.3390/ijms241310488.
Texte intégralCybulla, Emily, Jessica Jackson, Stephanie Tirman, Annabel Quinet, Delphine Lemacon, and Alessandro Vindigni. "Abstract 803: Identifying a RAD18/UBC13-dependent mechanism of replication fork recovery to modulate chemoresponse in BRCA1-deficient cancers." Cancer Research 82, no. 12_Supplement (2022): 803. http://dx.doi.org/10.1158/1538-7445.am2022-803.
Texte intégralFollonier, Cindy, Judith Oehler, Raquel Herrador, and Massimo Lopes. "Friedreich's ataxia–associated GAA repeats induce replication-fork reversal and unusual molecular junctions." Nature Structural & Molecular Biology 20, no. 4 (2013): 486–94. http://dx.doi.org/10.1038/nsmb.2520.
Texte intégralFierro-Fernández, Marta, Pablo Hernández, Dora B. Krimer, and Jorge B. Schvartzman. "Replication Fork Reversal Occurs Spontaneously after Digestion but Is Constrained in Supercoiled Domains." Journal of Biological Chemistry 282, no. 25 (2007): 18190–96. http://dx.doi.org/10.1074/jbc.m701559200.
Texte intégralKile, Andrew C., Diana A. Chavez, Julien Bacal, et al. "HLTF’s Ancient HIRAN Domain Binds 3′ DNA Ends to Drive Replication Fork Reversal." Molecular Cell 58, no. 6 (2015): 1090–100. http://dx.doi.org/10.1016/j.molcel.2015.05.013.
Texte intégralAdolph, Madison, Swati Balakrishnan, Walter Chazin, and David Cortez. "Abstract IA024: Mechanistic insights into how RADX regulates RAD51 nucleoprotein filaments to maintain genome stability and control replication stress responses." Cancer Research 84, no. 1_Supplement (2024): IA024. http://dx.doi.org/10.1158/1538-7445.dnarepair24-ia024.
Texte intégralFlores, Maria Jose, Vladimir Bidnenko, and Bénédicte Michel. "The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants." EMBO reports 5, no. 10 (2004): 983–88. http://dx.doi.org/10.1038/sj.embor.7400262.
Texte intégralDixit, Suruchi, Tarun Nagraj, Debanjali Bhattacharya, et al. "RTEL1 helicase counteracts RAD51-mediated homologous recombination and fork reversal to safeguard replicating genomes." Cell Reports 43, no. 8 (2024): 114594. http://dx.doi.org/10.1016/j.celrep.2024.114594.
Texte intégralTian, Tian, Min Bu, Xu Chen, et al. "The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability." Molecular Cell 81, no. 1 (2021): 198–211. http://dx.doi.org/10.1016/j.molcel.2020.11.007.
Texte intégralRegairaz, Marie, Yong-Wei Zhang, Haiqing Fu, et al. "Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I–DNA complexes." Journal of Cell Biology 195, no. 5 (2011): 739–49. http://dx.doi.org/10.1083/jcb.201104003.
Texte intégralNeelsen, Kai J., Isabella M. Y. Zanini, Raquel Herrador, and Massimo Lopes. "Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates." Journal of Cell Biology 200, no. 6 (2013): 699–708. http://dx.doi.org/10.1083/jcb.201212058.
Texte intégralWalker, John R., and Xu-Dong Zhu. "Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy." International Journal of Molecular Sciences 23, no. 18 (2022): 10212. http://dx.doi.org/10.3390/ijms231810212.
Texte intégralGuarino, Estrella, Alfonso Jiménez-Sánchez, and Elena C. Guzmán. "Defective Ribonucleoside Diphosphate Reductase Impairs Replication Fork Progression in Escherichia coli." Journal of Bacteriology 189, no. 9 (2007): 3496–501. http://dx.doi.org/10.1128/jb.01632-06.
Texte intégralBai, Gongshi, Chames Kermi, Henriette Stoy, et al. "HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis." Molecular Cell 78, no. 6 (2020): 1237–51. http://dx.doi.org/10.1016/j.molcel.2020.04.031.
Texte intégral