Littérature scientifique sur le sujet « Formulation of Nanocomposite Materials »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Formulation of Nanocomposite Materials ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Formulation of Nanocomposite Materials"
Vafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Pakkiraiah et Chandra Mohan. « Polymer Matrix Nanocomposites for Sustainable Packaging : A Green Approach ». E3S Web of Conferences 511 (2024) : 01008. http://dx.doi.org/10.1051/e3sconf/202451101008.
Texte intégralVafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Sankara Babu et Binitendra Naath Mongal. « Polymer Matrix Nanocomposites for Sustainable Packaging : A Green Approach ». E3S Web of Conferences 537 (2024) : 08001. http://dx.doi.org/10.1051/e3sconf/202453708001.
Texte intégralCarrascosa, Ana, Jaime S. Sánchez, María Guadalupe Morán-Aguilar, Gemma Gabriel et Fabiola Vilaseca. « Advanced Flexible Wearable Electronics from Hybrid Nanocomposites Based on Cellulose Nanofibers, PEDOT:PSS and Reduced Graphene Oxide ». Polymers 16, no 21 (29 octobre 2024) : 3035. http://dx.doi.org/10.3390/polym16213035.
Texte intégralMarin, Maria Minodora, Ioana Catalina Gifu, Gratiela Gradisteanu Pircalabioru, Madalina Albu Kaya, Rodica Roxana Constantinescu, Rebeca Leu Alexa, Bogdan Trica et al. « Microbial Polysaccharide-Based Formulation with Silica Nanoparticles ; A New Hydrogel Nanocomposite for 3D Printing ». Gels 9, no 5 (19 mai 2023) : 425. http://dx.doi.org/10.3390/gels9050425.
Texte intégralHAFEZ, INAS H., MOHAMED R. BERBER, KEIJI MINAGAWA, TAKESHI MORI et MASAMI TANAKA. « FORMULATION OF POLYACRYLIC ACID-LAYERED DOUBLE HYDROXIDE COMPOSITE SYSTEM AS A SOIL CONDITIONER FOR WATER MANAGEMENT ». International Journal of Modern Physics : Conference Series 06 (janvier 2012) : 138–43. http://dx.doi.org/10.1142/s2010194512003078.
Texte intégralGatos, K. G., A. A. Apostolov et J. Karger-Kocsis. « Compatibilizer Effect of Grafted Glycidyl Methacrylate on EPDM/Organoclay Nanocomposites ». Materials Science Forum 482 (avril 2005) : 347–50. http://dx.doi.org/10.4028/www.scientific.net/msf.482.347.
Texte intégralPinto, Susana C., Paula A. A. P. Marques, Romeu Vicente, Luís Godinho et Isabel Duarte. « Hybrid Structures Made of Polyurethane/Graphene Nanocomposite Foams Embedded within Aluminum Open-Cell Foam ». Metals 10, no 6 (9 juin 2020) : 768. http://dx.doi.org/10.3390/met10060768.
Texte intégralGuz, Alexander N., et Jeremiah J. Rushchitsky. « Some Fundamental Aspects of Mechanics of Nanocomposite Materials and Structural Members ». Journal of Nanotechnology 2013 (2013) : 1–16. http://dx.doi.org/10.1155/2013/641581.
Texte intégralReddy, J. N., Vinu U. Unnikrishnan et Ginu U. Unnikrishnan. « Recent advances in the analysis of nanotube-reinforced polymeric biomaterials ». Journal of the Mechanical Behavior of Materials 22, no 5-6 (1 décembre 2013) : 137–48. http://dx.doi.org/10.1515/jmbm-2013-0021.
Texte intégralNajem Abed, Nisreen Abdul Rahman, Suha Mujahed Abudoleh, Iyad Daoud Alshawabkeh, Abdul Rahman Najem Abed, Rasha Khaled Ali Abuthawabeh et Samer Hasan Hussein-Al-Ali. « Aspirin Drug Intercalated into Zinc-Layered Hydroxides as Nanolayers : Structure and In Vitro Release ». Nano Hybrids and Composites 18 (novembre 2017) : 42–52. http://dx.doi.org/10.4028/www.scientific.net/nhc.18.42.
Texte intégralThèses sur le sujet "Formulation of Nanocomposite Materials"
Acquadro, Julien. « Étude des propriétés tribologiques et électriques de revêtements sol-gel comme alternative anticorrosion au cadmium et au chrome hexavalent pour la connectique en environnements sévères ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST150.
Texte intégralConnector technology involves the components that create electrical connections between different systems. In critical sectors such as aerospace and military, these connections must be highly reliable and able to perform under harsh conditions. Therefore, the electrical contacts within connectors are protected by housings made from aluminium alloys, like AA6061, which must meet three essential criteria: electrical conductivity, mechanical strength, and corrosion resistance. Currently, these properties are achieved through surface protection coatings based on cadmium passivated with hexavalent chromium (VI). However, since 2017, this solution has been deemed unacceptable in Europe due to evolving RoHS and REACH directives and regulations, given the severe toxicity of cadmium and hexavalent chromium to both the environment and human health.This thesis is part of a significant industrial collaboration involving seven partners focused on developing and producing coatings to replace cadmium passivated with chromium (VI). Among the various approaches explored, the most innovative and promising involves using sol-gel coatings made conductive through the incorporation of appropriate conductive fillers. The strategy entails implementing these coatings at the laboratory scale and subjecting them to rigorous industrial qualification tests on connector housings.This thesis aims to enhance understanding of how various stages in the development of coatings affect their properties related to electrical conduction, wear resistance, and anti-corrosion capabilities. Deposits applied to laboratory model specimens were studied at both macroscopic and microscopic scales to determine the optimal synthesis parameters. These parameters include sol-gel precursors, amount of water, maturation conditions, and deposition techniques, all of which are adjusted based on the physicochemical and structural properties of the resulting films. The influence of the type and quantity of conductive fillers, whether carbon-based or metallic, on properties such as electrical conduction, wear resistance, mechanical strength, and corrosion protection, was rigorously evaluated.Periodic comparisons were made between these study results and the outcomes of qualification tests conducted on industrially complex connector housings coated with the same formulations. This allowed the identification of challenges to overcome in achieving the necessary properties of electrical conduction, mechanical strength, and corrosion resistance. These efforts also provide development prospects for the future of this technology in the connector industry
Oyharçabal, Mathieu. « Synthèse, formulation, et mise en oeuvre de nanomatériaux conducteurs base poly(aniline) / nanotubes de carbone pour des applications micro-ondes ». Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14633.
Texte intégralThis thesis deals with the formulation of electrically conductive nanocomposites for microwave applications. The main purpose is to process radar-absorbent materials, more particularly at the X band. (8-12 GHz). Polyaniline and carbon nanotubes, dispersed in an epoxyde matrix, have been selected. Different morphologies of polyaniline have been synthesized to study its impact on the absorption properties of composites. Using flake-like polyaniline showing high anisotropy and aspect ratio increases conductivity and dielectric losses of composites. Moreover, its association with carbon nanotubes significantly improves the absorption properties at microwaves frequencies. Efficient radar absorbing screens, showing reflection losses lower than -20 dB, have been calculated and processed confirming the potential of these materials for stealth applications
PAMMI, SRI LAXMI. « CARBON NANOCOMPOSITE MATERIALS ». University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1069881274.
Texte intégralThomas, Michael David Ross. « Electrical phenomena in nanocomposite materials ». Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621926.
Texte intégralBobrinetskiy, I. I., A. Y. Gerasimenko, L. Ichkitidze, O. R. Khrolova, R. V. Morozov, V. M. Podgaetsky et S. V. Selishchev. « Nanocomposite Materials for Cell Growth ». Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35452.
Texte intégralLee, Ji Hoon. « Tensegrity-inspired nanocomposite structures ». Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44839.
Texte intégralBera, Chandan. « Thermo electric properties of nanocomposite materials ». Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00576360.
Texte intégralYani, Yin. « Molecular dynamics simulation of nanocomposite materials ». [Ames, Iowa : Iowa State University], 2009.
Trouver le texte intégralDi, Carlo Lidia. « Nanocomposite cathodic materials for secondary cells ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17765.
Texte intégralHexagonal tungsten bronze (HTB)-FeF3∙0.33H2O xerogel and HTB-FeF3∙0.33H2O/GO nanocomposite were firstly obtained by a room temperature fluorolytic sol-gel approach in MeOH, and their electrochemical properties evaluated. Operando Mössbauer spectroscopy and X-Ray diffraction were employed to investigate the reaction mechanism during reaction with lithium. The fluoride evidenced a complex behavior, with structural collapse of the HTB phase and gradual transformation into FeF2-rutile-like nanodomains, becoming the predominant component all along the reaction. XRD confirmed the amorphization of the electroactive material. Structural optimization of HTB-FeF3·0.33H2O was then achieved by a microwave-assisted fluorolytic sol-gel in benzyl alcohol. The procedure allowed the synthesis of phase pure nanoparticles of ~30 nm in diameter, along with the production of a reduced graphene oxide (RGO)-based nanocomposite and the reduction of reaction times. Deposition onto conductive RGO resulted beneficial for the electrochemical performance of the fluoride, which was able to sustain repeated cycling at different C-rates and recovered full capacity after more than 50 cycles with respect to the unsupported HTB-FeF3·0.33H2O. Aiming at the production of active ions-holding materials to solve safety issues related to the use of metallic anodes, necessary with structures such as HTB-FeF3·0.33H2O, Na-containing hexafluoroferrate nanocomposites were produced using RGO and partially oxidized carbon black (ox-CB) as conductive carbons. Carbon type greatly affected the electrochemical performance, whose best improvement was obtained using RGO as support
Ye, Yueping. « Microstructure and properties of epoxy/halloysite nanocomposite / ». View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20YE.
Texte intégralLivres sur le sujet "Formulation of Nanocomposite Materials"
Sun, Rong, Ruxu Du et Yu Shuhui. Functional nanocomposite materials. Durnten-Zurich : Trans Tech Publishing, 2012.
Trouver le texte intégralGulati, Shikha, dir. Chitosan-Based Nanocomposite Materials. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5338-5.
Texte intégralMittal, Vikas. Advances in polymer nanocomposite technology. Hauppauge, NY : Nova Science Publishers, 2009.
Trouver le texte intégralMahler, Erne, et Detlev Seiler. Carbon nanotube and nanocomposite research. Hauppauge, N.Y : Nova Science Publishers, 2011.
Trouver le texte intégralKar, Kamal K., dir. Handbook of Nanocomposite Supercapacitor Materials III. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68364-1.
Texte intégralKar, Kamal K., dir. Handbook of Nanocomposite Supercapacitor Materials II. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52359-6.
Texte intégralKar, Kamal K., dir. Handbook of Nanocomposite Supercapacitor Materials I. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43009-2.
Texte intégralAvalos Belmontes, Felipe, Francisco J. González et Miguel Ángel López-Manchado, dir. Green-Based Nanocomposite Materials and Applications. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18428-4.
Texte intégralKar, Kamal K., dir. Handbook of Nanocomposite Supercapacitor Materials IV. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23701-0.
Texte intégralPogrebnjak, Alexander D., Yang Bing et Martin Sahul, dir. Nanocomposite and Nanocrystalline Materials and Coatings. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2667-7.
Texte intégralChapitres de livres sur le sujet "Formulation of Nanocomposite Materials"
Salam, Haipan, et Yu Dong. « Properties of Optimal Material Formulation of Bioepoxy/Clay Nanocomposites ». Dans Bioepoxy/Clay Nanocomposites, 171–99. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_6.
Texte intégralSalam, Haipan, et Yu Dong. « Morphological Structures of Bioepoxy/Clay Nanocomposites with Optimum Material Formulation ». Dans Bioepoxy/Clay Nanocomposites, 145–70. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_5.
Texte intégralParameswaranpillai, Jyotishkumar, Nishar Hameed, Thomas Kurian et Yingfeng Yu. « Introduction to Nanomaterials and Nanocomposites ». Dans Nanocomposite Materials, 1–4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-2.
Texte intégralGatos, K. G., et Y. W. Leong. « Classification of Nanomaterials and Nanocomposites ». Dans Nanocomposite Materials, 5–36. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-3.
Texte intégralRamazani S.A., A., Y. Tamsilian et M. Shaban. « Synthesis of Nanomaterials ». Dans Nanocomposite Materials, 37–80. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-4.
Texte intégralRodriguez, Veronica Marchante, et Hrushikesh A. Abhyankar. « Optical Properties of Nanomaterials ». Dans Nanocomposite Materials, 81–103. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-5.
Texte intégralGashti, Mazeyar Parvinzadeh, Farbod Alimohammadi, Amir Kiumarsi, Wojciech Nogala, Zhun Xu, William J. Eldridge et Adam Wax. « Microscopy of Nanomaterials ». Dans Nanocomposite Materials, 105–28. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-6.
Texte intégralShokoohi, Shirin, Ghasem Naderi et Aliasghar Davoodi. « Mechanical Properties of Nanomaterials ». Dans Nanocomposite Materials, 129–45. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-7.
Texte intégralNasirpouri, Farzad. « Electrodeposited Nanocomposite Films ». Dans Electrodeposition of Nanostructured Materials, 289–310. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44920-3_7.
Texte intégralSalam, Haipan, et Yu Dong. « The Effects of Material Formulation and Manufacturing Process on Mechanical and Thermal Properties of Conventional Epoxy/Clay Nanocomposites ». Dans Bioepoxy/Clay Nanocomposites, 97–112. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_3.
Texte intégralActes de conférences sur le sujet "Formulation of Nanocomposite Materials"
Advincula, Rigoberto C. « Superhydrophobic and Nanostructured HPHT Stable Polybenzoxazine Nanocomposite Coatings for Oil and Gas ». Dans CORROSION 2019, 1–7. NACE International, 2019. https://doi.org/10.5006/c2019-13524.
Texte intégralLEPADATU, Daniel, Loredana JUDELE, Ioana ENTUC, Eduard PROASPAT et Gabriel SANDULACHE. « NANOPARTICLES AND RECYCLABLE WASTE IN CONSTRUCTION MATERIALS. FROM PRACTICAL NECESSITY TO ADVANCED SOLUTIONS ». Dans SGEM International Multidisciplinary Scientific GeoConference, 231–38. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024v/6.2/s25.29.
Texte intégralTian, Zhiting, Sang Kim, Ying Sun et Bruce White. « A Molecular Dynamics Study of Thermal Conductivity in Nanocomposites via the Phonon Wave Packet Method ». Dans ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89272.
Texte intégralTallman, T. N. « Strain Estimation From Conductivity Changes in Piezoresistive Nanocomposites ». Dans ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9012.
Texte intégralTalamadupula, Krishna Kiran, et Gary D. Seidel. « Multiscale Modeling of Effective Piezoresistivity and Implementation of Non-Local Damage Formulation in Nanocomposite Bonded Explosives ». Dans 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0903.
Texte intégralZhao, Dongfang, Jacob Meves, Anirban Mondal, Mrinal C. Saha et Yingtao Liu. « Additive Manufacturing of Embedded Strain Sensors in Structural Composites ». Dans ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94366.
Texte intégralLuo, Wenyuan, Yingtao Liu, Mrinal Saha, Steven Patterson et Thomas Robison. « Fabrication, Optimization, and Characterization of PDMS/CNF Nanocomposite Sensor Arrays ». Dans ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86269.
Texte intégralUttley, Katherine, Anika Galvan, Matthew Nakatsuka et Marco Basile. « High Temperature Compatible, Field-Deployable Heat Exchanger Nanocomposite Treatments ». Dans Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35384-ms.
Texte intégralBayar, Selen, Feridun Delale, Benjamin Liaw, Jackie Ji Li, Jerry Chung, Matthew Dabrowski et Ramki Iyer. « An In-Depth Study on the Mechanical and Thermal Properties of Nanoclay Reinforced Polymers at Various Temperatures ». Dans ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37341.
Texte intégralHernandez, J. A., H. Zhu, F. Semperlotti et T. N. Tallman. « The Transient Response of Piezoresistive CNF-Modified Epoxy Rods to One-Dimensional Wave Packet Excitation ». Dans ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67801.
Texte intégralRapports d'organisations sur le sujet "Formulation of Nanocomposite Materials"
Roy, R., et S. Komarneni. Multifunctional nanocomposite materials. Office of Scientific and Technical Information (OSTI), novembre 1991. http://dx.doi.org/10.2172/6977177.
Texte intégralHunt, A. J., M. Ayers et W. Cao. Aerogel nanocomposite materials. Office of Scientific and Technical Information (OSTI), mai 1995. http://dx.doi.org/10.2172/105119.
Texte intégralRoy, R., et S. Komarneni. Multifunctional nanocomposite materials. Progress report. Office of Scientific and Technical Information (OSTI), novembre 1991. http://dx.doi.org/10.2172/10187528.
Texte intégralStormont, John. Wellbore Seal Repair Using Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), août 2016. http://dx.doi.org/10.2172/1337552.
Texte intégralCollins, Eric, Michelle Pantoya, Andreas A. Neuber, Michael Daniels et Daniel Prentice. Piezoelectric Ignition of Nanocomposite Energetic Materials. Fort Belvoir, VA : Defense Technical Information Center, janvier 2013. http://dx.doi.org/10.21236/ada597296.
Texte intégralPotter, Jr, et Barrett G. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics. Fort Belvoir, VA : Defense Technical Information Center, juin 2012. http://dx.doi.org/10.21236/ada562250.
Texte intégralKrishnan, Sitaraman, John McLaughlin et Dipankar Roy. Novel Nanocomposite Materials for Solar Cell Fabrication. Fort Belvoir, VA : Defense Technical Information Center, janvier 2012. http://dx.doi.org/10.21236/ada570684.
Texte intégralPantoya, Michelle L. Combustion and Ignition Studies of Nanocomposite Energetic Materials. Fort Belvoir, VA : Defense Technical Information Center, décembre 2010. http://dx.doi.org/10.21236/ada545482.
Texte intégralHash, M. C., V. N. Zyryanov, J. K. Basco et D. B. Chamberlain. Fissile Materials Disposition Formulation Report. Office of Scientific and Technical Information (OSTI), juin 1999. http://dx.doi.org/10.2172/802089.
Texte intégralHaglund, Jr., Richard F. Linear and Nonlinear Optical Properties of Metal Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), novembre 2018. http://dx.doi.org/10.2172/1481179.
Texte intégral