Littérature scientifique sur le sujet « FRAGILT CURVE »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « FRAGILT CURVE ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "FRAGILT CURVE"
Grigoriu, M., et A. Radu. « Are seismic fragility curves fragile ? » Probabilistic Engineering Mechanics 63 (janvier 2021) : 103115. http://dx.doi.org/10.1016/j.probengmech.2020.103115.
Texte intégralWu, Yun Dan, Xiao Yao et Shi Jun Zhou. « Seismic Fragility Analysis for Typical Multi-Span Simply Supported Railway Box Girder Bridges ». Applied Mechanics and Materials 858 (novembre 2016) : 137–44. http://dx.doi.org/10.4028/www.scientific.net/amm.858.137.
Texte intégralKim, Beom-Jin, Minkyu Kim, Daegi Hahm, Junhee Park et Kun-Yeun Han. « Probabilistic Flood Assessment Methodology for Nuclear Power Plants Considering Extreme Rainfall ». Energies 14, no 9 (1 mai 2021) : 2600. http://dx.doi.org/10.3390/en14092600.
Texte intégralWijayanti, Erlin, Stefanus Kristiawan, Edy Purwanto et Senot Sangadji. « Seismic Vulnerability of Reinforced Concrete Building Based on the Development of Fragility Curve : A Case Study ». Applied Mechanics and Materials 845 (juillet 2016) : 252–58. http://dx.doi.org/10.4028/www.scientific.net/amm.845.252.
Texte intégralFatimah, Samreen, et Jenna Wong. « Sensitivity of the Fragility Curve on Type of Analysis Methods, Applied Ground Motions and Their Selection Techniques ». International Journal of Steel Structures 21, no 4 (26 juin 2021) : 1292–304. http://dx.doi.org/10.1007/s13296-021-00503-z.
Texte intégralWu, Tong, Luyao Wang, Liyang Zhao, Gangping Fan, Jiahui Wang, Lihui Yin, Shuang Zhang et Shengchun Liu. « Seismic Fragility of a Multi-Frame Box-Girder Bridge Influenced by Seismic Excitation Angles and Column Height Layouts ». Buildings 12, no 3 (21 mars 2022) : 387. http://dx.doi.org/10.3390/buildings12030387.
Texte intégralKaplan, Stan, Vicki M. Bier et Dennis C. Bley. « A note on families of fragility curves—is the composite curve equivalent to the mean curve ? » Reliability Engineering & ; System Safety 43, no 3 (janvier 1994) : 257–61. http://dx.doi.org/10.1016/0951-8320(94)90029-9.
Texte intégralChoi, Seung Hun, Hee Jung Ham et Sungsu Lee. « Assessment of Building Vulnerability Curve Subjected to Debris-Flow ». Journal of the Korean Society of Hazard Mitigation 20, no 5 (31 octobre 2020) : 11–20. http://dx.doi.org/10.9798/kosham.2020.20.5.11.
Texte intégralWaenpracha, Suthiwat, Piyawat Foytong, Anawat Suppasri, Supakorn Tirapat, Nuttawut Thanasisathit, Pongnathee Maneekul et Teraphan Ornthammarath. « Development of Fragility Curves for Reinforced-Concrete Building with Masonry Infilled Wall under Tsunami ». Advances in Civil Engineering 2023 (14 mars 2023) : 1–15. http://dx.doi.org/10.1155/2023/8021378.
Texte intégralDang, Thuat-Cong, Thien-Phu Le et Pascal Ray. « Seismic fragility curves based on the probability density evolution method ». Vietnam Journal of Mechanics 39, no 2 (21 juin 2017) : 177–89. http://dx.doi.org/10.15625/0866-7136/10208.
Texte intégralThèses sur le sujet "FRAGILT CURVE"
Praticò, Lucia. « Analisi di vulnerabilità sismica di strutture prefabbricate mediante curve di fragilità ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Trouver le texte intégralTahir, Haseeb. « Development of Fragility Curve Database for Multi-Hazard Performance Based Design ». Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71794.
Texte intégralMaster of Science
Patrignani, Elia. « Analisi sismica e determinazione di curve di fragilità per strutture in muratura ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Trouver le texte intégralGil, Edward Matthew. « Computational Modeling of Glass Curtain Wall Systems to Support Fragility Curve Development ». Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/94051.
Texte intégralMaster of Science
Performance-based engineering (PBE) can allow engineers and building owners to design a building envelope for specific performance objectives and strength/serviceability levels, in addition to the minimum design loads expected. These envelope systems benefit from PBE as it improves their resiliency and performance during natural multi-hazard events (i.e. earthquakes and hurricanes). A useful PBE tool engineers may utilize to estimate the damages an envelope system may sustain during an event is the fragility curve. Fragility curves allow engineers to estimate the probability of reaching a damage state (i.e. glass cracking, or glass fallout) given a specified magnitude of an engineering demand parameter (i.e. an interstory drift ratio during an earthquake). These fragility curves are typically derived from the results of extensive experimental testing of the envelope system. However, computational simulations can also be utilized as they are a viable option in current fragility curve development frameworks. As it’s popularity amongst owners and architects was evident, the architectural glass curtain wall (CW) was the specific building envelope system studied herein. Glass CWs would benefit from implementing PBE as they are very susceptible to damages during earthquakes and hurricanes. Therefore, the goal of this computational research study was to develop fragility curves based on the analytical results obtained from the computational simulation of glass CW systems, which could aid in multi-hazard PBE design of CWs. As v opposed to utilizing limited, small experimental data sets, these simulations can help to improve the accuracy and decrease the uncertainties in the data required for fragility curve development. To complete the numerical simulations, 3D finite element (FE) models of a glass CW system were generated and validated against experimental tests. 11 multi-panel CW system configurations were then modeled to analyze their effect on the glass CW’s performance during in-plane and out-of-plane loading simulations. These parametric configurations included changes to the: equivalent clamping load, glass thickness, and glass-to-frame clearance. Fragility curves were then generated and compared to the single panel CW fragility curves derived experimentally within the FEMA P-58 Seismic Fragility Curve Development study. The fragility curves within FEMA P-58 were determined to be more conservative since they are based on single panel CWs. These fragility curves do not consider: the effects of multiple glass panels with varying aspect ratios; the possible component interactions/responses that may affect the extent of damages; and the continuity of the CW framing members across multiple panels. Finally, a fragility dispersion study was completed to observe the effects of implementing different levels of uncertainty and dispersion in the fragility curves based on analytical results.
Franceschini, Iolanda. « Analisi di fragilità di strutture ricettive della zona costiera dell'Emilia-Romagna ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Trouver le texte intégralNielson, Bryant G. « Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones ». Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7542.
Texte intégralSaler, Elisa. « Seismic vulnerability and fragility of school buildings in Italy. A multiscale approach to assessment, prioritisation, and risk evaluation ». Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/348119.
Texte intégralAy, Bekir Ozer. « Fragility Based Assessment Of Low ». Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607629/index.pdf.
Texte intégralspecific characteristics is investigated to manage the earthquake risk and to develop strategies for disaster mitigation. Low&ndash
rise and mid&ndash
rise reinforced concrete structures, which constitute approximately 75% of the total building stock in Turkey, are focused in this fragility&ndash
based assessment. The seismic design of 3, 5, 7 and 9&ndash
story reinforced concrete frame structures are carried out according to the current earthquake codes and two dimensional analytical models are formed accordingly. The uncertainty in material variability is taken into account in the formation of structural simulations. Frame structures are categorized as poor, typical or superior according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Turkey. The demand statistics in terms of maximum interstory drift ratio are obtained for different sets of ground motion records. The capacity is determined in terms of limit states and the corresponding fragility curves are obtained from the probability of exceeding each limit state for different levels of ground shaking. The results are promising in the sense that the inherent structural deficiencies are reflected in the final fragility functions. Consequently, this study provides a reliable fragility&ndash
based database for earthquake damage and loss estimation of reinforced concrete building stock in urban areas of Turkey.
Giraudeau, Fabien. « Construction de courbes de fragilité sismique par la représentation de Karhunen-Loève ». Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22540/document.
Texte intégralThe failure probability of a structure under earthquake is represented with « fragility curves ». To estimate them, we propose to enrich a pre-existing data basis using the model of the article Stochastic model construction of natural hazards given experimental data, written by F. Poirion et I. Zentner, which is based on the Karhunen-Loeve expansion. The generated signals are sorted by seismic indicator classes using a data partitioning algorithm. Despite the resemblance between some simulated signals, and the consequences we draw from this problem, the structure is submitted to them. The resulting response signals are also enriched, taking into account uncertainties to construct an interval around the curve. The method works for any seismic indicator, and overcomes several common simplifying assumptions. The characteristics of the seismic scenario are preserved during the enrichment, and the process modeling the ground motion retains its generality. Our approach is first validated on a simple case, then on an industrial case
伊藤, 義人, Yoshito ITOH, 光永 和田 et Mitsunaga WADA. « イベントを考慮した交通基盤施設のライフサイクル評価手法に関する研究 ». 土木学会, 2003. http://hdl.handle.net/2237/8633.
Texte intégralLivres sur le sujet "FRAGILT CURVE"
Zhu, Feng. The fragility of the Phillips curve : A bumpy ride in the frequency domain. Basel, Switzerland : Bank for International Settlements, 2005.
Trouver le texte intégralDerivation of empirical fragility curves from Italian damage data. ROSE School, 2008.
Trouver le texte intégralChapitres de livres sur le sujet "FRAGILT CURVE"
Mohamed Nazri, Fadzli. « Fragility Curves ». Dans Seismic Fragility Assessment for Buildings due to Earthquake Excitation, 3–30. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7125-6_2.
Texte intégralRossetto, Tiziana, Dina D’Ayala, Ioanna Ioannou et Abdelghani Meslem. « Evaluation of Existing Fragility Curves ». Dans SYNER-G : Typology Definition and Fragility Functions for Physical Elements at Seismic Risk, 47–93. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7872-6_3.
Texte intégralNakano, Kazuyoshi, Yoshio Kajitani et Hirokazu Tatano. « Functional Fragility Curves for Production Capacity ». Dans Integrated Disaster Risk Management, 11–25. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2719-4_2.
Texte intégralSalem, Yasser S., P. E. Tiffany Yoo, Ghad M. Gad et Jin Sung Cho. « Analytical Fragility Curves for Pipe Rack Structure ». Dans Advances and Challenges in Structural Engineering, 292–306. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01932-7_23.
Texte intégralPrasad, P., et C. Gopinath. « Fragility Curves for Structures Using Energy Criterion ». Dans Lecture Notes in Civil Engineering, 703–19. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1608-5_51.
Texte intégralCimellaro, Gian Paolo. « Fragility Curves of Restoration Processes for Resilience Analysis ». Dans Springer Series in Reliability Engineering, 495–507. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52425-2_21.
Texte intégralSalem, Yasser S., P. E. Aren Azizian et Jin Sung Cho. « Analytical Fragility Curves of Open Frame Platform Structures ». Dans Advances and Challenges in Structural Engineering, 277–91. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01932-7_22.
Texte intégralCardellino, Enrico, Donatella de Silva et Emidio Nigro. « Estimation of Structural Fire Vulnerability Through Fragility Curves ». Dans Lecture Notes in Civil Engineering, 586–93. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91877-4_67.
Texte intégralRemki, Mustapha, et Fouad Kehila. « Analytically Derived Fragility Curves and Damage Assessment of Masonrybuildings ». Dans Facing the Challenges in Structural Engineering, 42–54. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61914-9_4.
Texte intégralYang, H. Z., et C. G. Koh. « Seismic Risk Evaluation by Fragility Curves Using Metamodel Methods ». Dans Lecture Notes in Mechanical Engineering, 313–23. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9199-0_29.
Texte intégralActes de conférences sur le sujet "FRAGILT CURVE"
Serdar, Nina N., Jelena R. Pejovic, Radenko Pejovic et Miloš Knežević. « Seismic risk assessment of RC curved bridges through fragility curves ». Dans IABSE Symposium, Guimarães 2019 : Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland : International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.1488.
Texte intégralDu, Xinlong, Jerome F. Hajjar, Robert Bailey Bond et Hao Sun. « Collapse Fragility Development of Electrical Transmission Towers Subjected to Hurricanes ». Dans IABSE Symposium, Prague 2022 : Challenges for Existing and Oncoming Structures. Zurich, Switzerland : International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0235.
Texte intégralSinha, R. « High dimensional model representation for the probabilistic assessment of seismic pounding ». Dans Advanced Topics in Mechanics of Materials, Structures and Construction. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902592-5.
Texte intégralGmelin, Sebastian, Kristian Agger et Michael Lassen. « Simulation Design Tools : Using Parametric Building Information Modeling and Physical Simulation for Form Finding of Double Curved Surfaces ». Dans eCAADe 2011 : Respecting Fragile Places. eCAADe, 2011. http://dx.doi.org/10.52842/conf.ecaade.2011.215.
Texte intégralShimazu, Ryuya, Michiya Sakai, Yohei Ono et Shinichi Matsuura. « Strength Distribution Characteristics of Elbow Pipes Considering Low Cycle Fatigue Based on Analysis ». Dans ASME 2021 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/pvp2021-61943.
Texte intégralJu, Heekun, et Hyung-Jo Jung. « Estimation of Equipment Fragility Curve of Nonlinear Nuclear Power Plant Structures ». Dans IABSE Conference, Seoul 2020 : Risk Intelligence of Infrastructures. Zurich, Switzerland : International Association for Bridge and Structural Engineering (IABSE), 2020. http://dx.doi.org/10.2749/seoul.2020.143.
Texte intégralBursi, Oreste S., Giuseppe Abbiati, Luca Caracoglia et Md Shahin Reza. « Effects of Uncertainties in Boundary Conditions on Dynamic Characteristics of Industrial Plant Components ». Dans ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28177.
Texte intégralKumar, Rajesh, Dipti Ranjan Sahoo et Ashok Gupta. « Fragility curves for special truss moment frame with single and multiple vierendeel special segment ». Dans 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia : Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7248.
Texte intégralColonna, Silvia, Stefania Imperatore et Barbara Ferracuti. « FRAGILITY CURVES OF MASONRY CHURCHES FAÇADES ». Dans 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens : Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2019. http://dx.doi.org/10.7712/120119.6951.19424.
Texte intégralQiu, L. Y., N. Z. Nik Azizan et R. M. K. Tahara. « Development of fragility curves for bridge ». Dans ADVANCES IN MATERIAL SCIENCE AND MANUFACTURING ENGINEERING. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0116439.
Texte intégralRapports d'organisations sur le sujet "FRAGILT CURVE"
Schultz, Martin T., Ben P. Gouldby, Jonathan D. Simm et Johannes L. Wibowo. Beyond the Factor of Safety : Developing Fragility Curves to Characterize System Reliability. Fort Belvoir, VA : Defense Technical Information Center, juillet 2010. http://dx.doi.org/10.21236/ada525580.
Texte intégralColeman, Justin. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves. Office of Scientific and Technical Information (OSTI), septembre 2014. http://dx.doi.org/10.2172/1168656.
Texte intégralDu, Xinlong, et Jerome F. Hajjar. Structural Performance Assessment of Electrical Transmission Networks for Hurricane Resilience Enhancement. Northeastern University, août 2022. http://dx.doi.org/10.17760/d20460693.
Texte intégralHobbs, T. E., J. M. Journeay, A. S. Rao, L. Martins, P. LeSueur, M. Kolaj, M. Simionato et al. Scientific basis of Canada's first public national seismic risk model. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330927.
Texte intégral