Littérature scientifique sur le sujet « Gallium nitride »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Gallium nitride ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Gallium nitride"
Sarkar, Sujoy, et S. Sampath. « Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control ». Chemical Communications 52, no 38 (2016) : 6407–10. http://dx.doi.org/10.1039/c6cc02487d.
Texte intégralDobrynin, A. V., M. M. Sletov et V. V. Smirnov. « Luminescent properties of gallium nitride and gallium-aluminum nitride ». Journal of Applied Spectroscopy 55, no 5 (novembre 1991) : 1169–71. http://dx.doi.org/10.1007/bf00658419.
Texte intégralAl-Zuhairi, Omar, Ahmad Shuhaimi, Nafarizal Nayan, Adreen Azman, Anas Kamarudzaman, Omar Alobaidi, Mustafa Ghanim, Estabraq T. Abdullah et Yong Zhu. « Non-Polar Gallium Nitride for Photodetection Applications : A Systematic Review ». Coatings 12, no 2 (18 février 2022) : 275. http://dx.doi.org/10.3390/coatings12020275.
Texte intégralRajan, Siddharth, et Debdeep Jena. « Gallium nitride electronics ». Semiconductor Science and Technology 28, no 7 (21 juin 2013) : 070301. http://dx.doi.org/10.1088/0268-1242/28/7/070301.
Texte intégralKochuev, D. A., A. S. Chernikov, R. V. Chkalov, A. V. Prokhorov et K. S. Khorkov. « Deposition of GaN nanoparticles on the surface of a copper film under the action of electrostatic field during the femtosecond laser ablation synthesis in ammonia environment ». Journal of Physics : Conference Series 2131, no 5 (1 décembre 2021) : 052089. http://dx.doi.org/10.1088/1742-6596/2131/5/052089.
Texte intégralMendes, Marco, Jeffrey Sercel, Mathew Hannon, Cristian Porneala, Xiangyang Song, Jie Fu et Rouzbeh Sarrafi. « Advanced Laser Scribing for Emerging LED Materials ». Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, DPC (1 janvier 2011) : 001443–71. http://dx.doi.org/10.4071/2011dpc-wa32.
Texte intégralMcLaurin, M., B. Haskell, S. Nakamura et J. S. Speck. « Gallium adsorption onto (112̄0) gallium nitride surfaces ». Journal of Applied Physics 96, no 1 (juillet 2004) : 327–34. http://dx.doi.org/10.1063/1.1759086.
Texte intégralAssali, Lucy V. C., W. V. M. Machado et João F. Justo. « Manganese Impurity in Boron Nitride and Gallium Nitride ». Materials Science Forum 483-485 (mai 2005) : 1047–50. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.1047.
Texte intégralKang, Liping, Lingli Wang, Haiyan Wang, Xiaodong Zhang et Yongqiang Wang. « Preparation and Performance of Gallium Nitride Powders with Preferred Orientation ». MATEC Web of Conferences 142 (2018) : 01009. http://dx.doi.org/10.1051/matecconf/201814201009.
Texte intégralVolcheck, V. S., M. S. Baranava et V. R. Stempitsky. « Thermal conductivity of wurtzite gallium nitride ». Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 67, no 3 (8 octobre 2022) : 285–97. http://dx.doi.org/10.29235/1561-8358-2022-67-3-285-297.
Texte intégralThèses sur le sujet "Gallium nitride"
Li, Ting. « Gallium nitride and aluminum gallium nitride-based ultraviolet photodetectors / ». Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Texte intégralMuensit, Supasarote. « Piezoelectric coefficients of gallium arsenide, gallium nitride and aluminium nitride ». Phd thesis, Australia : Macquarie University, 1999. http://hdl.handle.net/1959.14/36187.
Texte intégralThesis (PhD)--Macquarie University, School of Mathematics, Physics, Computing and Electronics, 1999.
Includes bibliographical references.
Introduction -- A Michelson interferometer for measurement of piezoelectric coefficients -- The piezoelectric coefficient of gallium arsenide -- Extensional piezoelectric coefficients of gallium nitrides and aluminium nitride -- Shear piezoelectric coefficients of gallium nitride and aluminium nitride -- Electrostriction in gallium nitride, aluminium nitride and gallium arsenide -- Summary and prognosis.
The present work represents the first use of the interferometric technique for determining the magnitude and sign of the piezoelectric coefficients of III-V compound semiconductors, in particular gallium arsenide (GaAs), gallium nitride (GaN), and aluminium nitride (AIN). The interferometer arrangement used in the present work was a Michelson interferometer, with the capability of achieving a resolution of 10⁻¹³ m. -- The samples used were of two types. The first were commercial wafers, with single crystal orientation. Both GaAs and GaN were obtained in this form. The second type of sample was polycrystalline thin films, grown in the semiconductor research laboratories at Macquarie University. GaN and AIN samples of this type were obtained. -- The d₁₄ coefficient of GaAs was measured by first measuring the d₃₃ value of a [111] oriented sample. This was then transformed to give the d₁₄ coefficient of the usual [001] oriented crystal. The value obtained for d₁₄ was (-2.7 ± 0.1) pmV⁻¹. This compares well with the most recent reported measurements of -2.69 pmV⁻¹. The significance of the measurement is that this represents the first time this coefficient has been measured using the inverse piezoelectric effect. -- For AIN and GaN samples, the present work also represents the first time their piezoelectric coefficients have been measured by interferometry. For GaN, this work presents the first reported measurements of the piezoelectric coefficients, and some of these results have recently been published by the (Muensit and Guy, 1998). The d₃₃ and d₃₁ coefficients for GaN were found to be (3.4 ± 0.1) pmV⁻¹ and (-1.7 ± 0.1) pmV⁻¹ respectively. Since these values were measured on a single crystal wafer and have been corrected for substrate clamping, the values should be a good measure of the true piezoelectric coefficients for bulk GaN. -- For AIN, the d₃₃ and d₃₁ coefficients were found to be (5.1 ± 0.2) pmV⁻¹, and (-2.6 ± 0.1) pmV⁻¹ respectively. Since these figures are measured on a polycrystalline sample it is quite probable that the values for bulk AIN would be somewhat higher.
The piezoelectric measurements indicate that the positive c axis in the nitride films points away from the substrate. The piezoelectric measurements provide a simple means for identifying the positive c axis direction. -- The interferometric technique has also been used to measure the shear piezoelectric coefficient d₁₅ for AIN and GaN. This work represents the first application of this technique to measure this particular coefficient. The d₁₅ coefficients for AIN and GaN were found to be (-3.6 ± 0.1) pmV⁻¹ and (-3.1 ± 0.1) pmV⁻¹ respectively. The value for AIN agrees reasonably well with the only reported value available in the literature of -4.08 pmV⁻¹. The value of this coefficient for GaN has not been measured. -- Some initial investigations into the phenomenon of electrostriction in the compound semiconductors were also performed. It appears that these materials have both a piezoelectric response and a significant electrostrictive response. For the polycrystalline GaN and AIN, the values of the M₃₃ coefficients are of the order of 10⁻¹⁸ m²V⁻². The commercial single crystal GaN and GaAs wafers display an asymmetric response which cannot be explained.
Mode of access: World Wide Web.
Various pagings ill
Mareš, Petr. « Depozice Ga a GaN nanostruktur na křemíkový a grafenový substrát ». Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231443.
Texte intégralCheng, Chung-choi, et 鄭仲材. « Positron beam studies of fluorine implanted gallium nitride and aluminium gallium nitride ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43278577.
Texte intégralCheng, Chung-choi. « Positron beam studies of fluorine implanted gallium nitride and aluminium gallium nitride ». Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43278577.
Texte intégralPopa, Laura C. « Gallium nitride MEMS resonators ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99296.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 187-206).
As a wide band-gap semiconductor, with large breakdown fields and saturation velocities, Gallium Nitride (GaN) has been increasingly used in high-power, high-frequency electronics and monolithic microwave integrated circuits (MMICs). At the same time, GaN also has excellent electromechanical properties, such as high acoustic velocities and low elastic losses. Together with a strong piezoelectric coupling, these qualities make GaN ideal for RF MEMS resonators. Hence, GaN technology offers a platform for the seamless integration of low-loss, piezoelectric RF MEMS resonators with high power, high frequency electronics. Monolithic integration of MEMS resonators with ICs would lead to reduced parasitics and matching constraints, enabling high-purity clocks and frequency-selective filters for signal processing and high-frequency wireless communications. This thesis highlights the physics and resonator design considerations that must be taken into account in a monolithically integrated solution. We then show devices that achieve the highest frequency-quality factor product in GaN resonators to date (1.56 x 1013). We also highlight several unique transduction mechanisms enabled by this technology, such as the ability to use the 2D electron gas (2DEG) channel of High Electron Mobility Transistors (HEMTs) as an electrode for transduction. This enables a unique out-of-line switching capability which allowed us to demonstrate the first DC switchable solid-state piezoelectric resonator. Finally, we discuss the benefits of using active HEMT sensing of the mechanical signal when scaling to GHz frequencies, which enabled the highest frequency lithographically defined resonance reported to date in GaN (3.5 GHz). These demonstrated features sh
by Laura C. Popa.
Ph. D.
Allums, Kimberly K. « Proton radiation and thermal stabilty [sic] of gallium nitride and gallium nitride devices ». [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013123.
Texte intégralHolmes, Kenneth L. « Two-dimensional modeling of aluminum gallium nitride/gallium nitride high electron mobility transistor ». Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Jun%5FHolmes.pdf.
Texte intégralAnderson, David Richard. « Phonon-limited electron transport in gallium nitride and gallium nitride-based heterostructures, 1760-1851 ». Thesis, University of York, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270104.
Texte intégralJackson, Helen C. « Effect of variation of silicon nitride passivation layer on electron irradiated aluminum gallium nitride/gallium nitride HEMT structures ». Thesis, Air Force Institute of Technology, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3629786.
Texte intégralSilicon nitride passivation on AlGaN\GaN heterojunction devices can improve performance by reducing electron traps at the surface. This research studies the effect of displacement damage caused by 1 MeV electron irradiation as a function of the variation of passivation layer thickness and heterostructure layer variation on AlGaN/GaN HEMTs. The effects of passivation layer thickness are investigated at thicknesses of 0, 20, 50 and 120 nanometers on AlGaN\GaN test structures with either an AlN nucleation layer or a GaN cap structures which are then measured before and immediately after 1.0 MeV electron irradiation at fluences of 1016 cm-2. Hall system measurements are used to observe changes in mobility, carrier concentration and conductivity as a function of Si3N4 thickness. Models are developed that relate the device structure and passivation layer under 1 MeV radiation to the observed changes to the measured photoluminescence and deep level transient spectroscopy. A software model is developed to determine the production rate of defects from primary 1 MeV electrons that can be used for other energies and materials. The presence of either a 50 or 120 nm Si 3N4 passivation layer preserves the channel current for both and appears to be optimal for radiation hardness.
Livres sur le sujet "Gallium nitride"
1922-, Pankove Jacques I., et Moustakas T. D, dir. Gallium nitride (GaN). San Diego : Academic Press, 1998.
Trouver le texte intégral1922-, Pankove Jacques I., Moustakas T. D et Willardson Robert K, dir. Gallium nitride (GaN) II. San Diego : Academic Press, 1999.
Trouver le texte intégralFeenstra, Randall M., et Colin E. C. Wood, dir. Porous Silicon Carbide and Gallium Nitride. Chichester, UK : John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470751817.
Texte intégralEhrentraut, Dirk, Elke Meissner et Michal Bockowski, dir. Technology of Gallium Nitride Crystal Growth. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04830-2.
Texte intégralB, Gil, dir. Low-dimensional nitride semiconductors. Oxford : Oxford University Press, 2002.
Trouver le texte intégralMichael, Shur, et Davis Robert F. 1942-, dir. GaN-based materials and devices : Growth, fabrication, characterization and performance. Singapore : World Scientific, 2004.
Trouver le texte intégralInternational Conference on Nitride Semiconductors (4th 2001 Denver, Colo.). ICNS-4 : Fourth International Conference on Nitride Semiconductors, Denver, Colorado, USA, 2001 : proceedings. Berlin : Wiley-VCH, 2002.
Trouver le texte intégralChuan, Feng Zhe, dir. III-nitride devices and nanoengineering. London : Imperial College Press, 2008.
Trouver le texte intégralVserossiĭskoe soveshchanie "Nitridy gallii︠a︡, indii︠a︡ i ali︠u︡minii︠a︡--struktury i pribory" (2nd 1998 St. Petersburg, Russia). Nitridy gallii︠a︡, indii︠a︡ i ali︠u︡minii︠a︡--struktury i pribory : Materialy 2-go vserossiĭskogo soveshchanii︠a︡, 2 ii︠u︡nii︠a︡ 1998 g., Sankt-Peterburgskiĭ gosudarstvennyĭ tekhnicheskiĭ universitet = Gallium nitride, indium nitride, aluminum nitride--structures and devices : technical digest : the 2nd Russian Workshop, June 2, 1998, St.-Petersburg State Technical University. Sankt-Peterburg : Sankt-Peterburgskiĭ gos. tekhn. universitet, 1998.
Trouver le texte intégralConference on Semiconducting and Insulating Materials (9th 1996 Toulouse, France). Semiconducting and insulating materials 1996 : Proceedings of the 9th Conference on Semiconducting and Insulating Materials (SIMC'9), April 29/May 3, 1996, Toulouse, France. New York : Institute of Electrical and Electronics Engineers, 1996.
Trouver le texte intégralChapitres de livres sur le sujet "Gallium nitride"
Linares, R. C., et R. M. Ware. « Gallium Nitride ». Dans Inorganic Reactions and Methods, 202. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145227.ch146.
Texte intégralDi Paolo Emilio, Maurizio. « Gallium Nitride ». Dans GaN and SiC Power Devices, 35–47. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_4.
Texte intégralSchoonmaker, Richard C., Claudia E. Burton, J. Lundstrom et J. L. Margrave. « Gallium (III) Nitride ». Dans Inorganic Syntheses, 16–18. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132388.ch5.
Texte intégralBin, Dong. « 9 The Packaging Technologies for GaN HEMTs ». Dans Gallium Nitride Power Devices, 261–80. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 : CRC Press, 2017. http://dx.doi.org/10.1201/9781315196626-10.
Texte intégralFeenstra, R. M., et S. W. Hla. « 2.3.7 GaN, Gallium Nitride ». Dans Physics of Solid Surfaces, 52–53. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_24.
Texte intégralKinski, Isabel, et Paul F. McMillan. « Gallium Nitride and Oxonitrides ». Dans Ceramics Science and Technology, 91–130. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631735.ch3.
Texte intégralKinski, Isabel, et Paul F. McMillan. « Gallium Nitride and Oxonitrides ». Dans Ceramics Science and Technology, 91–130. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch15.
Texte intégralChowdhury, Srabanti. « Vertical Gallium Nitride Technology ». Dans Power Electronics and Power Systems, 101–21. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43199-4_5.
Texte intégralKhandelwal, Sourabh. « Gallium Nitride Semiconductor Devices ». Dans Advanced SPICE Model for GaN HEMTs (ASM-HEMT), 1–8. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77730-2_1.
Texte intégralBehzad, Somayeh. « Two-Dimensional Gallium Nitride ». Dans 21st Century Nanoscience – A Handbook, 7–1. Boca Raton, Florida : CRC Press, [2020] : CRC Press, 2020. http://dx.doi.org/10.1201/9780429347290-7.
Texte intégralActes de conférences sur le sujet "Gallium nitride"
Wu, Tsung Han, Zhe Chuan Feng, Fangfei Li, Chung Cherng Lin, Ian Ferguson, Ray Hua Horng, Weijie Lu, P. M. Champion et L. D. Ziegler. « Brillouin scattering studies of gallium nitride and Indium gallium nitride ». Dans XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482346.
Texte intégralPraharaj, C. Jayant. « Gallium Nitride/ Boron Nitride/ Aluminum Gallium Nitride E-Mode High Electron Mobility Transistor Modeling ». Dans 2023 1st International Conference on Circuits, Power and Intelligent Systems (CCPIS). IEEE, 2023. http://dx.doi.org/10.1109/ccpis59145.2023.10291344.
Texte intégralMcGinn, Christine, Qingyuan Zeng, Keith Behrman, Vikrant Kumar et Ioannis Kymissis. « Fully transparent gallium nitride/indium gallium nitride LED as a position sensitive detector ». Dans Gallium Nitride Materials and Devices XIX, sous la direction de Hadis Morkoç, Hiroshi Fujioka et Ulrich T. Schwarz. SPIE, 2024. http://dx.doi.org/10.1117/12.2692143.
Texte intégralMartin, Kevin N. « European gallium nitride capability ». Dans 2015 IEEE International Radar Conference (RadarCon). IEEE, 2015. http://dx.doi.org/10.1109/radar.2015.7131004.
Texte intégralLi, Changyi, Antonio Hurtado, Jeremy B. Wright, Huiwen Xu, Sheng Liu, Ting S. Luk, Igal Brener, Steven R. Brueck et George T. Wang. « Gallium Nitride Nanotube Lasers ». Dans CLEO : Science and Innovations. Washington, D.C. : OSA, 2014. http://dx.doi.org/10.1364/cleo_si.2014.sw1g.3.
Texte intégralSakr, Salam, Maria Tchernycheva, Juliette Mangeney, Elias Warde, Nathalie Isac, Lorenzo Rigutti, Raffaele Colombelli et al. « III-nitride intersubband photonics ». Dans Gallium Nitride Materials and Devices VII. SPIE, 2012. http://dx.doi.org/10.1117/12.900002.
Texte intégralDavis, R. F., S. M. Bishop, S. Mita, R. Collazo, Z. J. Reitmeier et Z. Sitar. « Epitaxial Growth Of Gallium Nitride ». Dans PERSPECTIVES ON INORGANIC, ORGANIC, AND BIOLOGICAL CRYSTAL GROWTH : FROM FUNDAMENTALS TO APPLICATIONS : Basedon the lectures presented at the 13th International Summer School on Crystal Growth. AIP, 2007. http://dx.doi.org/10.1063/1.2751931.
Texte intégralStassen, E., M. Pu, E. Semenova, E. Zavarin, W. Lundin et K. Yvind. « Highly Nonlinear Gallium Nitride Waveguides ». Dans CLEO : Science and Innovations. Washington, D.C. : OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sth3i.1.
Texte intégralGauthier, Briere, et Patrice Genevet. « Gallium nitride free standing metasurfaces ». Dans 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086612.
Texte intégralSui, Jingyang, et Pei-Cheng Ku. « Gallium Nitride Based Tactile Sensors ». Dans CLEO : Applications and Technology. Washington, D.C. : OSA, 2017. http://dx.doi.org/10.1364/cleo_at.2017.atu1a.6.
Texte intégralRapports d'organisations sur le sujet "Gallium nitride"
Harris, J. S. Bulk Gallium Nitride Growth. Fort Belvoir, VA : Defense Technical Information Center, septembre 1998. http://dx.doi.org/10.21236/ada353635.
Texte intégralHeikman, Sten J., et Umesh K. Mishra. System for Bulk Growth of Gallium Nitride. Vapor Phase Epitaxy of Gallium Nitride by Gallium Arc Evaporation. Fort Belvoir, VA : Defense Technical Information Center, mars 2005. http://dx.doi.org/10.21236/ada464611.
Texte intégralSkowronski, M. Deposition of Gallium Nitride Epilayers by OMVPE. Fort Belvoir, VA : Defense Technical Information Center, janvier 1998. http://dx.doi.org/10.21236/ada337316.
Texte intégralJones, Kenneth A., Randy P. Tompkins, Michael A. Derenge, Kevin W. Kirchner, Iskander G. Batyrev et Shuai Zhou. Gallium Nitride (GaN) High Power Electronics (FY11). Fort Belvoir, VA : Defense Technical Information Center, janvier 2012. http://dx.doi.org/10.21236/ada556955.
Texte intégralAllen, N. Gallium Nitride Superjunction Transistor : Continued Funding Report. Office of Scientific and Technical Information (OSTI), septembre 2022. http://dx.doi.org/10.2172/1890078.
Texte intégralMitchell, Christine Charlotte. Defect reduction in gallium nitride using cantilever epitaxy. Office of Scientific and Technical Information (OSTI), août 2003. http://dx.doi.org/10.2172/918286.
Texte intégralPenn, John, Sami Hawasli, Khamsouk Kingkeo et Ali Darwish. Gallium Nitride (GAN) RF Challenge ; BAE Design Testing. Aberdeen Proving Ground, MD : DEVCOM Army Research Laboratory, septembre 2021. http://dx.doi.org/10.21236/ad1148108.
Texte intégralHarris, H. M., J. Laskar et S. Nuttinck. Engineering Support for High Power Density Gallium Nitride Microwave Transistors. Fort Belvoir, VA : Defense Technical Information Center, décembre 2001. http://dx.doi.org/10.21236/ada397860.
Texte intégralMcHugo, S. A., J. Krueger et C. Kisielowski. Metallic impurities in gallium nitride grown by molecular beam epitaxy. Office of Scientific and Technical Information (OSTI), avril 1997. http://dx.doi.org/10.2172/603696.
Texte intégralHite, Jennifer, Mark Twigg, Michael Mastro, Jr Freitas, Meyer Jaime, Vurgaftman Jerry, O'Connor Igor et al. Development of Periodically Oriented Gallium Nitride for Non-linear Optics. Fort Belvoir, VA : Defense Technical Information Center, septembre 2012. http://dx.doi.org/10.21236/ada563315.
Texte intégral