Littérature scientifique sur le sujet « Gas/particle »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Gas/particle ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Gas/particle"

1

Chubb, Donald L. "Gas Particle Radiator." Journal of Thermophysics and Heat Transfer 1, no. 3 (1987): 285–88. http://dx.doi.org/10.2514/3.56213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhou, Lixing, and Zhuoxiong Zeng. "Studies on gas turbulence and particle fluctuation in dense gas-particle flows." Acta Mechanica Sinica 24, no. 3 (2008): 251–60. http://dx.doi.org/10.1007/s10409-008-0156-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

ASBACH, C., T. KUHLBUSCH, and H. FISSAN. "Investigation on the gas particle separation efficiency of the gas particle partitioner." Atmospheric Environment 39, no. 40 (2005): 7825–35. http://dx.doi.org/10.1016/j.atmosenv.2005.08.032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yang, Xiaojian, Chang Liu, Xing Ji, Wei Shyy null, and Kun Xu. "Unified Gas-Kinetic Wave-Particle Methods VI: Disperse Dilute Gas-Particle Multiphase Flow." Communications in Computational Physics 31, no. 3 (2022): 669–706. http://dx.doi.org/10.4208/cicp.oa-2021-0153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sinclair, J. L., and R. Jackson. "Gas-particle flow in a vertical pipe with particle-particle interactions." AIChE Journal 35, no. 9 (1989): 1473–86. http://dx.doi.org/10.1002/aic.690350908.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zeng, Zhuo Xiong, Zhang Jun Wang, and Yun Ni Yu. "Effect of Particle Finite Size on Gas Turbulent Flow." Advanced Materials Research 516-517 (May 2012): 752–57. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.752.

Texte intégral
Résumé :
Dynamic mesh and moving wall technique were employed to simulate the unsteady flow field of moving particle with finite size. For freely moving particle, it does not come into being particle wake. Middle particle can move straightforward outlet, but left and right particles move disorderly in a restricted region. Vortex location varies with the change of particle location. Turbulence energy and pressure is decreased gradually from inlet to outlet. But for moving particle with slip velocity between gas and particle, particle wake comes into being. Turbulence enhancement by particle wake effect
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhuo, C. F., W. J. Yao, X. S. Wu, F. Feng, and P. Xu. "Research on the Muzzle Blast Flow with Gas-Particle Mixtures Based on Eulerian-Eulerian Approach." Journal of Mechanics 32, no. 2 (2015): 185–95. http://dx.doi.org/10.1017/jmech.2015.44.

Texte intégral
Résumé :
ABSTRACTThe issue on the muzzle blast flow with gas-particle mixtures was numerically investigated in this paper. The propellant gas in the cannon was assumed to be gas-particle mixtures consisting of a variety of gaseous species and particles. The model made use of the Eulerian-Eulerican approach, where the particle were modeled as a second fluid with parameters like bulk density, velocity and temperature, interacting with the gas flow. A high-resolution upwind scheme(AUSMPW+) and detailed reaction kinetics model were employed to solve the chemical non-equilibrium Euler equations for gas phas
Styles APA, Harvard, Vancouver, ISO, etc.
8

Li, Jie, and J. A. M. Kuipers. "Gas-particle interactions in dense gas-fluidized beds." Chemical Engineering Science 58, no. 3-6 (2003): 711–18. http://dx.doi.org/10.1016/s0009-2509(02)00599-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Knoop, Claas, and Udo Fritsching. "Gas/particle Interaction in Ultrasound Agitated Gas Flow." Procedia Engineering 42 (2012): 770–81. http://dx.doi.org/10.1016/j.proeng.2012.07.469.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Li, Jie, and J. A. M. Kuipers. "Effect of competition between particle–particle and gas–particle interactions on flow patterns in dense gas-fluidized beds." Chemical Engineering Science 62, no. 13 (2007): 3429–42. http://dx.doi.org/10.1016/j.ces.2007.01.086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Gas/particle"

1

Strömgren, Tobias. "Modelling of turbulent gas-particle flow." Licentiate thesis, KTH, Mechanics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4639.

Texte intégral
Résumé :
<p>An Eulerian-Eulerian model for dilute gas-particle turbulent flows is</p><p>developed for engineering applications. The aim is to understand the effect of particles on turbulent flows. The model is implemented in a finite element code which is used to perform numerical simulations. The feedback from the particles on the turbulence and the mean flow of the gas in a vertical channel flow is studied. In particular, the influence of the particle response time and particle volume fraction on the preferential concentration of the particles near the walls, caused by the turbophoretic effect is exp
Styles APA, Harvard, Vancouver, ISO, etc.
2

Strömgren, Tobias. "Modelling of turbulent gas-particle flow /." Stockholm : Mekanik, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Götz, Christian Walter. "Gas-particle partitioning and particle-bound deposition of semivolatile organic chemicals /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Yonghao. "Particle-gas interactions in two-fluid models of gas-solid flows." Thesis, University of Aberdeen, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367375.

Texte intégral
Résumé :
Modelling gas-solid two-phase flows using a two-fluid approach has two main difficulties: formulating constitutive laws for the particulate stresses and modelling the gas turbulence modulation. Due to the complex nature of the gas-particle interactions, there is no universal model covering every flow regime. In this thesis, three flow regimes with distinctive characteristics are studied, i.e. the very dense regime where the solid volume fraction, <I>v</I><sub>2</sub>>5%, the dense flow regime where 5%≥1%, and the relatively dilute regime where 1%≥<I>v<sub>2</sub></I>>0.1%. In the very dense fl
Styles APA, Harvard, Vancouver, ISO, etc.
5

Choi, Moon Kyu Gavalas George R. Gavalas George R. "Particle shape effects on gas-solid reactions /." Diss., Pasadena, Calif. : California Institute of Technology, 1992. http://resolver.caltech.edu/CaltechETD:etd-07232007-152302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Strömgren, Tobias. "Model predictions of turbulent gas-particle shear flows." Doctoral thesis, KTH, Mekanik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12135.

Texte intégral
Résumé :
A turbulent two-phase flow model using kinetic theory of granularflows for the particle phase is developed and implmented in afinite element code. The model can be used for engineeringapplications. However, in this thesis it is used to investigateturbulent gas-particle flows through numerical simulations.  The feedback from the particles on the turbulence and the meanflow of the gas in a vertical channel flow is studied. In particular,the influence of the particle response time, particle volumefraction and particle diameter on the preferential concentration ofthe particles near the walls, caus
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mansoorzadeh, Shahriar. "Numerical modelling of gas particle fluidised bed dynamics." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313654.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Slater, Shane Anthony. "Particle transport in laminar and turbulent gas flows." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624527.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Forsyth, Peter. "High temperature particle deposition with gas turbine applications." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:61556237-feed-43cb-9f4a-d0aed00ca3f8.

Texte intégral
Résumé :
This thesis describes validated improvements in the modelling of micron-sized particle deposition within gas turbine engine secondary air systems. The initial aim of the research was to employ appropriate models of instantaneous turbulent flow behaviour to RANS CFD simulations, allowing the trajectory of solid particulates in the flow to be accurately predicted. Following critical assessment of turbophoretic models, the continuous random walk (CRW) model was chosen to predict instantaneous fluid fluctuating velocities. Particle flow, characterised by non-dimensional deposition velocity and par
Styles APA, Harvard, Vancouver, ISO, etc.
10

Swar, Rohan. "Particle Erosion of Gas Turbine Thermal Barrier Coating." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1259075518.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Gas/particle"

1

Astrup, Poul. Turbulent gas-particle flow. Risø National Laboratory, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Varaksin, Aleksej Y., ed. Turbulent Particle-Laden Gas Flows. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68054-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Varaksin, A. Y. Collisions in particle-laden gas flows. Begell House, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

United States. National Aeronautics and Space Administration., ed. Analysis of the gas particle radiator. National Aeronautics and Space Administration, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lock, G. D. Gas density and particle concentration measurements in shock-induced dusty-gas flows. [s.n.], 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dall, Henrik. Development of a Computer Model for Stationary Turbulent 3-D Gas-Particle Flows: Characteristics parameters of gas-particle flow. Riso National Laboratory, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kikas, Ulle. Atmospheric aerosol in the Baltic Region: Particle size distributions, sources gas-to-particle conversion. Tartu University Press, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Backman, Ulrika. Studies on nanoparticle synthesis via gas-to-particle conversion. VTT Technical Research Centre of Finland, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

A, Lane Douglas, ed. Gas and particle phase measurements of atmospheric organic compounds. Gordon and Breach, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

P, Astrup. Development of a computer model for stationary turbulent 3-D gas-particle flow: Numerical prediction of a turbulent gas-particle duct flow. Riso Library, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Gas/particle"

1

Fauchais, Pierre L., Joachim V. R. Heberlein, and Maher I. Boulos. "Gas Flow–Particle Interaction." In Thermal Spray Fundamentals. Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-68991-3_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Michoud, Vincent. "Particle-Gas Multiphasic Interactions." In Atmospheric Chemistry in the Mediterranean Region. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-82385-6_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yoshida, Hideto, and Hisao Makino. "Particle Sampling in Gas Flow." In Powder Technology Handbook. CRC Press, 2019. http://dx.doi.org/10.1201/b22268-69.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Fan. "Detonation of Gas-Particle Flow." In Shock Wave Science and Technology Reference Library. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88447-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Seville, J. P. K., and R. Clift. "Gas cleaning at high temperatures: gas and particle properties." In Gas Cleaning in Demanding Applications. Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1451-3_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Charlson, R. J. "Gas-to-Particle Conversion and CCN Production." In Dimethylsulphide: Oceans, Atmosphere and Climate. Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-1261-3_29.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gori-Giorgi, Paola. "Uniform Electron Gas from Two-Particle Wavefunctions." In Electron Correlations and Materials Properties 2. Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3760-8_22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Valiveti, Prabhu, and Donald L. Koch. "Instability of Sedimenting Bidisperse Particle Gas Suspensions." In In Fascination of Fluid Dynamics. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4986-0_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kawano, A., and K. Kusano. "Continuum/particle interlocked simulation of gas detonation." In Shock Waves. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mazzei, Luca. "Recent Advances in Modeling Gas-Particle Flows." In Handbook of Multiphase Flow Science and Technology. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-4585-86-6_8-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Gas/particle"

1

Malhotra, Shivali, and Othmane Bouhali. "Parallelizing particle track simulations in gas based charged particle detectors." In 42nd International Conference on High Energy Physics. Sissa Medialab, 2025. https://doi.org/10.22323/1.476.1031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhao, Libei, Zhixun Xia, Likun Ma, et al. "Influence of the combustor length on the combustion characteristics of the gas-particle two-phase gas." In First Aerospace Frontiers Conference (AFC 2024), edited by Han Zhang. SPIE, 2024. http://dx.doi.org/10.1117/12.3033781.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hagen, G., and R. Moos. "C5.2 - Continuous Estimation of Particle Emissions in Flue Gas of Wood Combustion using Gas Sensor Measurements." In SMSI 2025. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2025. https://doi.org/10.5162/smsi2025/c5.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tsuji, Yutaka. "TURBULENCE IN GAS-PARTICLE FLOW." In Third Symposium on Turbulence and Shear Flow Phenomena. Begellhouse, 2003. http://dx.doi.org/10.1615/tsfp3.10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kocsis, M. "Gas-filled micro void particle detector." In 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515). IEEE, 2003. http://dx.doi.org/10.1109/nssmic.2003.1352065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ward, Sayed A., M. A. Abd Allah, and Amr A. Youssef. "Multi-particle initiated breakdown of gas mixtures inside compressed gas devices." In 2012 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP 2012). IEEE, 2012. http://dx.doi.org/10.1109/ceidp.2012.6378793.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Horton, Tom. "Gas strippers for neutral particle beam systems." In 32nd Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-255.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhang, Xinyu, and Goodarz Ahmadi. "Particle Effects on Gas-Liquid-Solid Flows." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65695.

Texte intégral
Résumé :
A numerical simulation is carried out to study the role of particles in gas-liquid-solid flows in bubble columns. An Eulerian-Lagrangian model is used and the liquid flow is modeled using a volume-averaged system of governing equations, while motions of bubbles and particles are evaluated using Lagrangian trajectory analysis. It is assumed that the bubbles remain spherical. The interactions between bubble-liquid and particle-liquid are included in the study. The discrete phase equations include drag, lift, buoyancy, and virtual mass forces. Particle-particle interactions and bubble-bubble inte
Styles APA, Harvard, Vancouver, ISO, etc.
9

Boyd, Iain, and Quanhua Sun. "Particle simulation of micro-scale gas flows." In 39th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-876.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

ISHII, R., and Y. UMEDA. "Free-jet flows of gas-particle mixtures." In 4th Thermophysics and Heat Transfer Conference. American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1317.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Gas/particle"

1

Fowler, T. K. Particle transport and gas feed during gun injection. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/9633.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Durham, M. D. Flue gas conditioning for improved particle collection in electrostatic precipitators. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/7205354.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sankaran Sundaresan. Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/1007990.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Durham, M. D. Flue gas conditioning for improved particle collection in electrostatic precipitators. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/7045530.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Durham, M. D. Flue gas conditioning for improved particle collection in electrostatic precipitators. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/7045559.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Durham, M. D. Flue gas conditioning for improved particle collection in electrostatic precipitators. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/6552831.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Durham, M. D. Flue gas conditioning for improved particle collection in electrostatic precipitators. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/5794372.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Anderson, Iver, and Jordan Tiarks. CONCENTRIC RING GAS ATOMIZATION DIE DESIGN FOR OPTIMIZED PARTICLE PRODUCTION. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1853951.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Reed, D. T., J. Hoh, J. Emery, S. Okajima, and T. Krause. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/303944.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Turner, J. E., R. N. Hamn, S. R. Hunter, W. A. Gibson, G. S. Hurst, and H. A. Wright. Optical imaging of charged particle tracks in a gas. Final report. Office of Scientific and Technical Information (OSTI), 1995. http://dx.doi.org/10.2172/114038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!