Littérature scientifique sur le sujet « Geomagnetic field variations and reversals »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Geomagnetic field variations and reversals ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Geomagnetic field variations and reversals"

1

Kocharov, G. E., A. V. Blinov, A. N. Konstantinov, and V. A. Levchenko. "Temporal 10Be and 14C Variations: A Tool for Paleomagnetic Research." Radiocarbon 31, no. 2 (1989): 163–68. http://dx.doi.org/10.1017/s0033822200044829.

Texte intégral
Résumé :
Temporal variations of cosmogenic radionuclide atmospheric concentrations can be caused by such global phenomena as solar activity and geomagnetic field changes as well as atmospheric circulation processes. These causes can be distinguished by the comparison of several isotope records corresponding to the same time period. We discuss a possibility for reconstructing the geomagnetic moment during the last 30,000 years from the comparison of 10Be and 14C concentrations in terrestrial archives. The results agree with conventional paleomagnetic data and promise to enrich our knowledge of geomagnet
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dobretsov, N. L., D. V. Metelkin, and A. N. Vasilevskiy. "Typical Characteristics of the Earth’s Magnetic and Gravity Fields Related to Global and Regional Tectonics." Russian Geology and Geophysics 62, no. 1 (2021): 6–24. http://dx.doi.org/10.2113/rgg20204261.

Texte intégral
Résumé :
Abstract —We present a summary and analysis of current views on the magnetic and gravity fields of the Earth as a reflection of global and regional tectonic processes. The discussion concerns the probable interconnection between the distribution of the geomagnetic field characteristics, gravity anomalies and the manifestations of mantle plume magmatism as the most remarkable geologic indicator of deep geodynamics. We demonstrate that the distribution of the characteristics of the main geomagnetic field has a qualitative similarity to anomalies of the gravity field. Brief variations of the geom
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kočí, Alois, and A. Janáčková. "Variations of the geomagnetic field at the time of reversals." Studia Geophysica et Geodaetica 29, no. 3 (1985): 280–89. http://dx.doi.org/10.1007/bf01638439.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Maffei, Stefano, Philip W. Livermore, Jon E. Mound, Sam Greenwood, and Christopher J. Davies. "Fast Directional Changes during Geomagnetic Transitions: Global Reversals or Local Fluctuations?" Geosciences 11, no. 8 (2021): 318. http://dx.doi.org/10.3390/geosciences11080318.

Texte intégral
Résumé :
Paleomagnetic investigations from sediments in Central and Southern Italy found directional changes of the order of 10∘ per year during the last geomagnetic field reversal (which took place about 780,000 years ago). These values are orders of magnitudes larger than what is expected from the estimated millennial timescales for geomagnetic field reversals. It is yet unclear whether these extreme changes define the timescale of global dipolar change or whether they indicate a rapid, but spatially localised feature that is not indicative of global variations. Here, we address this issue by calcula
Styles APA, Harvard, Vancouver, ISO, etc.
5

Merrill, R. T., and P. L. McFadden. "Secular variation and the origin of geomagnetic field reversals." Journal of Geophysical Research 93, B10 (1988): 11589. http://dx.doi.org/10.1029/jb093ib10p11589.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ryan, David A., and Graeme R. Sarson. "A coupled low order dynamo/turbulent shell model for geomagnetic field variations and reversals." Physics of the Earth and Planetary Interiors 188, no. 3-4 (2011): 214–34. http://dx.doi.org/10.1016/j.pepi.2011.09.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ultré-Guérard, Pascale, and José Achache. "Core flow instabilities and geomagnetic storms during reversals: The Steens Mountain impulsive field variations revisited." Earth and Planetary Science Letters 135, no. 1-4 (1995): 91–99. http://dx.doi.org/10.1016/0012-821x(95)00149-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

MOCHIZUKI, Nobutatsu, and Hideo TSUNAKAWA. "Geomagnetic Field Variations at the Beginning of the Polarity Reversal." Journal of Geography (Chigaku Zasshi) 114, no. 2 (2005): 194–200. http://dx.doi.org/10.5026/jgeography.114.2_194.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pal, Poorna C. "The palaeogeomagnetic field strength, variations in reversal frequency, and geomagnetic dynamo models." Geophysical & Astrophysical Fluid Dynamics 44, no. 1-4 (1988): 189–205. http://dx.doi.org/10.1080/03091928808208885.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Abrahamsen, Niels, and Peter W. Readma. "Geomagnetic secular variation in Late Weichselian Allerød sediments from Nr. Lyngby (Denmark)." Bulletin of the Geological Society of Denmark 44 (March 15, 1997): 45–58. http://dx.doi.org/10.37570/bgsd-1998-44-03.

Texte intégral
Résumé :
Palaeomagnetic measurements on 400 specimens from lake sediments exposed in the cliff of the classic Late Glacial Allerød site at Nørre Lyngby in North Jutland, Denmark, are presented. Two profiles in the 7 m sequence of sand, silt and gyttja, spanning the time interval between c. 12 000 and c. 10 700 BP show about 5 cycles in the declination and about 2 cycles in inclination. Secular variation features as observed at this site are also recognizable at sites in southern Sweden and Soviet Karelia. Comparisons with Holocene records indicate that the short time-scale behaviour (i.e. < 103 y) o
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Geomagnetic field variations and reversals"

1

McMillan, David G. "Statistical analyses of geomagnetic dipole variations, reversals and geodynamo simulations /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3090447.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ménabréaz, Lucie. "Production atmosphérique du nucléide cosmogénique 10 Be et variations de l'intensité du champ magnétique terrestre au cours des derniers 800 000 ans." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4316/document.

Texte intégral
Résumé :
Parmi les méthodes de reconstitution de l'histoire du champ géomagnétique, l'étude des variations de la production atmosphérique d'isotopes cosmogéniques s'est récemment développé. Cette production est modulée au premier ordre et aux échelles multimillénaires par l'intensité du champ géomagnétique. Son enregistrement dans les archives de l'environnement terrestre en apporte une lecture indépendante, donc complémentaire des méthodes paléomagnétiques. Ce travail vise à retracer les changements de taux de production de 10Be enregistrés dans les sédiments marins, afin de restituer les variations d
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rawat, Rashmi. "Geomagnetic storm phenomenon as inferred from the low-latitude geomagnetic field variations and interplanetary parameters." Thesis, Indian Institute of Geomagnetism, Mumbai, 2008. http://localhost:8080/xmlui/handle/123456789/219.

Texte intégral
Résumé :
A thesis submitted to the University of Mumbai for the Ph.D. in Physics, under the guidance of Prof. Shobhana Alex.<br>Part of Conclusion : The thesis compiles the extensive analysis work done with large data set from low latitude geomagnetic observatories Alibag (Geog. Lat. 18.63◦N, long. 72.87◦E; Ge omag. Lat. 10.03◦N, Long. 145.97) and Tirunelvelli (Geog. Lat. 8.42◦N, long. 77.48◦E; Geomag. Lat. 0.57◦S, Long. 149.42) along with solar wind and interplane tary parameters, covering the solar cycle-23. Investigations are carried out on diverse modulations exhibited by the meridional (Bz) and zo
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bhaskar, Ankush. "Physical understanding and mathematical modeling of geomagnetic field variations during disturbed magnetosphere-ionosphere system." Thesis, Indian Institute of Geomagnetism (IIG), 2016. http://localhost:8080/xmlui/handle/123456789/885.

Texte intégral
Résumé :
A thesis submitted to the University of Mumbai for the Ph.D.(Science) degree in physics under the guidance of Dr. Geeta Vichare<br>The thesis concludes with the following list of major conclusions drawn from the entire study. • The effect of IMF Bz turnings observed in the equatorial geomagnetic field vari ations indicates that the magnitude of northward Bz does not have the influence on the equatorial ionosphere whereas, the response signatures are mainly con trolled by the magnitudes of southward Bz during both northward and southward turnings. • The equivalent current vectors reveal a cl
Styles APA, Harvard, Vancouver, ISO, etc.
5

Turton, Ian. "Temporal and spatial variations of the geomagnetic field, up to a timescale of 10⁵ years." Thesis, University of Edinburgh, 1992. http://hdl.handle.net/1842/11472.

Texte intégral
Résumé :
This thesis comprises two parts. The main part is involved with laboratory studies of the palaeosecular variation of the geomagnetic field as recorded in lake sediments. The natural remanent magnetization of the sediments cored from the two Italian maar lakes, Lago di Monticchio and Lago di Martignano, has been studied. Further studies were carried out on the sediments of Lago di Martignano to determine the cause of large variations in the magnetic intensity of the sediments with an age of ˜ 6000 years BP and it was concluded that this was caused by the arrival of Neolithic man and the advent
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nakano, Shinya. "Variations of large-scale field-aligned currents and their effects on mid-latitude geomagnetic disturbances." 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147822.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Saturnino, Diana. "Une méthode d’observatoires virtuels pour décrire les variations temporelles du champ géomagnétique et applications aux mesures de la mission Swarm." Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=181308db-f221-4fd6-84dc-ccfc2af8e6cd.

Texte intégral
Résumé :
A description of the temporal variations of the main geomagnetic field (i. E. , the secular variation, or SV) is crucial to the understanding of core dynamo generation. It is known with high accuracy at observatory locations, which are globally unevenly located, hampering the determination of a global pattern of these variations. Satellites have allowed global surveys of the field and its SV. Their data has been used by global spherical harmonic models using data selection criteria to reduce external contributions. SV small spatial scales may not be well described by these models, and can show
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ingham, Elizabeth Mary. "Exploring geomagnetic field behaviour during polarity reversals and excursions." Phd thesis, 2015. http://hdl.handle.net/1885/156161.

Texte intégral
Résumé :
The Earth's magnetic field, which is driven by dynamo action within the molten outer core, is constantly changing. Variations occur over a wide range of both spatial and temporal scales, and contribute to a complex overall field morphology. Despite significant advances over the last 25 years, much remains unknown regarding the behaviour and driving mechanisms of the geomagnetic field, with increased understanding requiring collection of further high-quality paleomagnetic records and development of new analytical tools. Two significant areas of study are investigated in this thesis: geomagnetic
Styles APA, Harvard, Vancouver, ISO, etc.
9

Venuti, A. "Variability of the climatic antarctic system during the Plio-Pleistocene: Paleomagnetism contribution." Thesis, 2007. http://hdl.handle.net/2122/3803.

Texte intégral
Résumé :
In the framework of a gradual global warming, which is one of the topic of major interest in the recent years and which importance is resumed in the Intergovernmental Panel on Climate Change (IPCC), it is important the study of the variability of the Earth’s system at the high latitudes i.e., in Artic and Antarctic areas, because these are the regions more sensitive to climatic changes. The possibility to study marine sedimentary sequences from Antarctica thus represented an important opportunity to investigate such climatic variability. Cold water mass formation in the Southern Ocean is invol
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Geomagnetic field variations and reversals"

1

Karl-Heinz, Glassmeier, Soffel H. Chr, and Negendank Jörg F. W, eds. Geomagnetic field variations. Springer, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Karl-Heinz, Glassmeier, Soffel H. Chr, and Negendank Jörg F. W, eds. Geomagnetic field variations. Springer, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Karl-Heinz, Glassmeier, Soffel H. Chr, and Negendank Jörg F. W, eds. Geomagnetic field variations. Springer, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Glaβmeier, Karl-Heinz, Heinrich Soffel, and Jörg F. W. Negendank. Geomagnetic Field Variations. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Negendank, Jorg, Heinrich Soffel, and K. H. Glaßmeier. Geomagnetic Field Variations. Springer, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Geomagnetic field variations. Springer, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Negendank, Jörg, Heinrich Soffel, and K. H. Glaßmeier. Geomagnetic Field Variations. Springer, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Glaßmeier, K. H., Jorg Negendank, and Heinrich Soffel. Geomagnetic Field Variations. Springer, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tema, E., A. Di Chiara, Emilio Herrero-Bervera, and Geological Society of London Staff. Geomagnetic Field Variations in the Past: New Data, Applications and Recent Advances. Geological Society Publishing House, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fuller, M., T. Yukutake, and M. J. S. Johnston. Tectonomagnetics and Local Geomagnetic Field Variations: Proceedings of IAGA/IAMAP Joint Assembly August 1977, Seattle, Washington. Springer, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Geomagnetic field variations and reversals"

1

Wicht, Johannes, Stephan Stellmach, and Helmut Harder. "Numerical Models of the Geodynamo: From Fundamental Cartesian Models to 3D Simulations of Field Reversals." In Geomagnetic Field Variations. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Laj, Carlo. "Geomagnetic Field, Polarity Reversals." In Encyclopedia of Solid Earth Geophysics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10475-7_116-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Laj, Carlo. "Geomagnetic Field, Polarity Reversals." In Encyclopedia of Solid Earth Geophysics. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Laj, Carlo. "Geomagnetic Field, Polarity Reversals." In Encyclopedia of Solid Earth Geophysics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fabian, Karl, and Roman Leonhardt. "Records of Paleomagnetic Field Variations." In Geomagnetic Field Variations. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Vogt, Joachim, Miriam Sinnhuber, and May-Britt Kallenrode. "Effects of Geomagnetic Variations on System Earth." In Geomagnetic Field Variations. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76939-2_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mazaud, A., C. Laj, and E. Bard. "A Phenomenological Model for Reversals of the Geomagnetic Field." In Geomagnetism and Palaeomagnetism. Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0905-2_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mohan, N. L., N. Sundararajan, and V. V. Haragopal. "Study of Geomagnetic Field Reversals using the Mellin Transform." In Geophysical Data Inversion Methods and Applications. Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-89416-8_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Valet, Jean-Pierre, and Emilio Herrero-Bervera. "A Few Characteristic Features of the Geomagnetic Field During Reversals." In The Earth's Magnetic Interior. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0323-0_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tarling, D. H. "Secular Variations of the Geomagnetic Field — The Archaeomagnetic Record." In Secular Solar and Geomagnetic Variations in the Last 10,000 Years. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3011-7_22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Geomagnetic field variations and reversals"

1

Nickolaenko, A. P., L. M. Rabinowicz, M. Hayakawa, and K. Hattori. "Periodic Variations of the Hurst Exponent of the Geomagnetic Field." In 15th International Zurich Symposium and Technical Exposition on Electromagnetic Compatibility. IEEE, 2003. https://doi.org/10.23919/emc.2003.10806292.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fernberg, P., L. Trichtchenko, D. H. Boteler, and L. McKee. "Telluric Hazard Assessment for Northern Pipelines." In CORROSION 2007. NACE International, 2007. https://doi.org/10.5006/c2007-07654.

Texte intégral
Résumé :
Abstract Telluric currents cause variations in pipe-to-soil potentials, which can override a pipeline’s cathodic protection system. The cumulative effect of the “unprotected” time can be significant in areas where telluric activity is high, such as the Canadian north. This paper presents a general approach to the assessment of telluric activity. Telluric currents observed in a pipeline are the result of three simultaneously operating factors: (1) variations of the Earth’s natural geomagnetic field, (2) conductivity of the underlying Earth and (3) pipeline electromagnetic properties and pipelin
Styles APA, Harvard, Vancouver, ISO, etc.
3

Trichtchenko, L., P. Fernberg, and M. Harrison. "Use of Geomagnetic Data for Evaluation of Telluric Effects on Pipelines." In CORROSION 2010. NACE International, 2010. https://doi.org/10.5006/c2010-10113.

Texte intégral
Résumé :
Abstract Telluric currents interfere with cathodic protection systems and cause variations in pipe-to-soil potentials, which can exceed the levels recommended for protection of the pipeline steel. The amplitudes of telluric currents observed in a pipeline depend on three factors: (1) the level of the geomagnetic activity, (2) conductivity of the underlying earth and (3) pipeline electromagnetic properties and geometric parameters. These factors have been incorporated into mathematical models that are used to estimate the pipe-to-soil potential variations due to telluric activity. The time when
Styles APA, Harvard, Vancouver, ISO, etc.
4

Trichtchenko, L. "Assessment of Telluric Activity in the Area of the Proposed Alaska Highway Pipeline." In CORROSION 2012. NACE International, 2012. https://doi.org/10.5006/c2012-01192.

Texte intégral
Résumé :
Abstract The geomagnetic field fluctuations are accompanied by the geo-electric (telluric) field and telluric currents at the surface of the Earth and in the pipelines. These telluric currents disturb pipeline cathodic protection levels, creating pipe-to-soil potential (PSP) fluctuations with different amplitudes. Amplitudes of PSP fluctuations directly depend on the telluric activity in the area of the pipeline location. To estimate the amplitudes of PSP variations due to telluric activity, pipeline circuit model based on Distributed Source Transmission Line Theory can be applied. The unknown
Styles APA, Harvard, Vancouver, ISO, etc.
5

Trichtchenko, L., D. H. Boteler, S. M. Hesjevik, and O. Birketveit. "The Production of Telluric Current Effects in Norway." In CORROSION 2001. NACE International, 2001. https://doi.org/10.5006/c2001-01314.

Texte intégral
Résumé :
Abstract This paper presents observations of telluric variations in the pipe-to-soil potential of the gas pipeline system in Norway. The potential variations at different sites are well correlated indicating a common source. A daily variation in potential is shown to be related to the “quiet-day” variation in the magnetic field. Shorter period fluctuations are caused by magnetic field variations associated with auroral activity. The method of modeling the electric fields induced by the geomagnetic field variations is presented and model calculations are made to determine the pipe-to-soil poten
Styles APA, Harvard, Vancouver, ISO, etc.
6

Asimopolos, Laurentiu, Natalia-Silvia Asimopolos, Vijdea Anca-Marina, Dinu Luminita, and Adrian-Aristide Asimopolos. "ANALYSIS OF GEOMAGNETIC DATABASES IMPACTING SPACE WEATHER." In SGEM International Multidisciplinary Scientific GeoConference 24. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/6.1/s28.63.

Texte intégral
Résumé :
Through the complex analysis of the geomagnetic database of the Surlari Geomagnetic Observatory for over 80 years, corroborated with the data of other planetary observatories from the INTERMAGNET network, we have extracted the geomagnetic information that is correlated with the specific physical parameters of space weather domain. Space weather refers to the conditions and phenomena occurring in outer space that can influence the near-Earth space environment. This concept includes a variety of events and conditions that occur outside the Earth's atmosphere and can affect various aspects of spa
Styles APA, Harvard, Vancouver, ISO, etc.
7

Boteler, D. H., L. Trichtchenko, C. Blais, and R. Pirjola. "A Telluric Current Simulator for Pipelines." In CORROSION 2013. NACE International, 2013. https://doi.org/10.5006/c2013-02522.

Texte intégral
Résumé :
Abstract Telluric currents due to geomagnetic field variations have long been known to cause variations in pipe-to-soil potentials (PSP) on pipelines. These are increasingly being taken into account in the design of cathodic protection systems for new pipelines. Online services are available for modelling telluric currents but cannot handle all pipeline configurations. This paper describes the development of a new telluric simulator, based on a more versatile modeling technique that can include more details of a pipeline such as branches and other features. This can show the pipe-to-soil poten
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bondarenko, Aleksey M., Nadezhda V. Yagova, and Pavel R. Varshavskii. "Machine Learning Methods for Development of a Model of “Land/Ocean” Contrast in the Parameters of ULF/ELF Variations of the Geomagnetic Field." In 2025 7th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). IEEE, 2025. https://doi.org/10.1109/reepe63962.2025.10971166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Trichtchenko, L. "Influence of Surface Conductivity Contrasts on the Currents and Fields Induced in Buried Pipelines by Sources of Variable Frequency." In CORROSION 2005. NACE International, 2005. https://doi.org/10.5006/c2005-05615.

Texte intégral
Résumé :
Abstract Various sources of fluctuating electromagnetic fields produce electric fields and currents in buried pipelines, which interfere with the pipeline infrastructure. Among these sources are power lines with a known single frequency (50 or 60 Hertz, Hz) and the natural geomagnetic field with variations in the frequency range from millihertz (mHz) to few Hz, which produce telluric currents in the pipelines. In this paper the analytical approach to the problem of the induction by external sources of variable frequency in an infinitely long multi-layered cylinder, representing the pipeline, i
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rokityansky, I. I., and A. V. Tereshyn. "Monitoring Geomagnetic Field Variations’ Slope." In 17th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.2023520247.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Geomagnetic field variations and reversals"

1

Nikitina, L., and L. Trichtchenko. Extreme values statistical assessment for geomagnetic and geoelectric field variations for Alberta. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296956.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kleimenova, Natalia G., A. Odzimek, S. Michnowski, and M. Kubicki. Geomagnetic Storms and Substorms as Space Weather I nfluence on Atmospheric Electric Field Variations. Balkan, Black Sea and Caspian Sea Regional Network on Space Weather Studies, 2018. http://dx.doi.org/10.31401/sungeo.2018.01.14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!