Thèses sur le sujet « Géométrie analytique »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Géométrie analytique ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Hénaut, Alain. « Problèmes de géométrie analytique complexe locale ». Nancy 1, 1992. http://docnum.univ-lorraine.fr/public/SCD_T_1992_0079_HENAUT.pdf.
Texte intégralComte, Georges. « Densité et images polaires en géométrie sous-analytique ». Aix-Marseille 1, 1998. http://www.theses.fr/1998AIX11051.
Texte intégralPopovici, Dan. « Quelques applications des méthodes effectives en géométrie analytique ». Université Joseph Fourier (Grenoble), 2003. https://tel.archives-ouvertes.fr/tel-00004007.
Texte intégralLepage, Emmanuel. « Géométrie anabélienne tempérée ». Paris 7, 2009. http://www.theses.fr/2009PA077193.
Texte intégralThe tempered fondamental group is in p-adic analytic geometry an analog of the topological fondamental group of complex manifolds that takes into account uniformisation in rigid geometry and finite etale coverings. More precisely, the tempered fondamental group of a p-adic manifold classifies etale coverings that become topological coverings after pullback by some fînite etale covering. In this thesis, we prove some general results about the tempered fondamental group, such as the invariance by change of the base field, a Kunneth formula for products, birational invariance and a description of the tempered fondamental group of abelian varieties. The tempered fondamental group of a curve depends much more on the curve than in complex geometry for the topological fondamental group or in algebraic geometry for the profinite fondammental group. For example, one can reconstruct the graph of the stable reduction of a curve from its tempered fondamental group. Here we prove that, for a Mumford curve, one can even recover the metric on this graph. Finally, we describe the (p1) part of the tempered fondamental group of a smooth and proper variety with some semistable reduction in terms of the logarithmic fondamental group of the reduction and of the combinatorics of this reduction. Thanks to this description, we then construct cospecialisation morphisms between the (p') tempered fondamental groups of the fibers of a smooth family with semistable reduction
Vallet, Bruno. « Géométrie analytique des champs de vecteurs et des difféomorphismes ». Paris 6, 1995. http://www.theses.fr/1995PA066746.
Texte intégralBouche, Thierry. « Inégalités de Morse holomorphes et problèmes en géométrie analytique ». Grenoble 1, 1990. http://www.theses.fr/1990GRE10018.
Texte intégralThiery, Jean-Marc. « Géométrie numérique et géométrie algorithmique pour le design interactif 3D ». Thesis, Paris, ENST, 2012. http://www.theses.fr/2012ENST0070/document.
Texte intégralWhile 3D surfaces are essentially represented using triangle meshes in the domain of digital geometry, the structures that allow to interact with those are various and adapted to the different geometry processing tasks that are targetted by the user.This thesis presents results on structures of various dimension and various geometrical representations, going from internal structures like analytical curve skeletons for shape modeling, to on-surface structures allowing automatic selection of feature handles for shape deformation, and external control structures known as “cages” offering a high-level representation of animated 3D data stemming from performance capture. Results on spatial functions are also presented, in particular for the Mean-Value Coordinates, for which the analytical formulae of the gradients and the Hessians are provided, and biharmonic functions, for which a finite elements basis is given for the resolution of the biharmonic Laplace problem with mixed Dirichlet/Neumann boundary conditions, as well as their applications to 3D shapes deformation
Xiao, Jian. « Positivité en géométrie kählérienne ». Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM027/document.
Texte intégralThe goal of this thesis is to study various positivity concepts in Kähler geometry. In particular, for a compact Kähler manifold of dimension n, we study the positivity of transcendental (1,1) and (n-1, n-1) classes. These objects include the divisor classes and curve classes over smooth complex projective varieties
Thiery, Jean-Marc. « Géométrie numérique et géométrie algorithmique pour le design interactif 3D ». Electronic Thesis or Diss., Paris, ENST, 2012. http://www.theses.fr/2012ENST0070.
Texte intégralWhile 3D surfaces are essentially represented using triangle meshes in the domain of digital geometry, the structures that allow to interact with those are various and adapted to the different geometry processing tasks that are targetted by the user.This thesis presents results on structures of various dimension and various geometrical representations, going from internal structures like analytical curve skeletons for shape modeling, to on-surface structures allowing automatic selection of feature handles for shape deformation, and external control structures known as “cages” offering a high-level representation of animated 3D data stemming from performance capture. Results on spatial functions are also presented, in particular for the Mean-Value Coordinates, for which the analytical formulae of the gradients and the Hessians are provided, and biharmonic functions, for which a finite elements basis is given for the resolution of the biharmonic Laplace problem with mixed Dirichlet/Neumann boundary conditions, as well as their applications to 3D shapes deformation
Chazal, Frédéric. « Sur les feuilletages de Rolle ». Dijon, 1997. http://www.theses.fr/1997DIJOS039.
Texte intégralSnoussi, Jawad. « Limites d'espaces tangents à une surface normale ». Aix-Marseille 1, 1998. http://www.theses.fr/1998AIX11037.
Texte intégralSebag, Julien. « Intégration motivique ». Paris 6, 2002. http://www.theses.fr/2002PA066468.
Texte intégralSoufflet, Rémi. « Non-oscillation de certaines intégrales et développements asymptotiques ». Dijon, 2001. http://www.theses.fr/2001DIJOS048.
Texte intégralJrad, Mohamad. « Modélisation du perçage à grande vitesse : approches analytique, numérique et expérimentale ». Thesis, Metz, 2007. http://www.theses.fr/2007METZ037S/document.
Texte intégralThe determination of the cutting forces generated during the drilling operation is an essential step in the drilling optimisation. This information is crucial for the cutting conditions determination and the tool definition. The aim of this work is to propose a predictive thermo mechanical model for the drilling process. This model is based ont the thermo mechanical oblique cutting model developed and validated in the LPMM laboratory. The parameters used in this model are the cutting angles, the cutting conditions, the behaviour of the workpiece materials and the friction conditions on tool-chip interface. After the determination of the cutting angles from the CAD definition of the drill using a mathematical geometrical model developed in this work, the cutting edges are decomposed into a series of linear oblique cutting edges. A modified version of the thermo mechanical model is then apllied on each elemental cutting edge in order to calculate the elemental cutting forces, and then the global thrust and torque are determined. Experimental dry drilling tests were performed in order to validate the presented model. The calculated and measured global torque and thrust were compared, a good agreement was obtained. In the last section a numerical model using the finite element method with two commercial codes are presented. 2D orthogonal cutting and 3D drilling simulations were carried out. Numerical simulation provides interesting information on the chip formation and on the temperature and stress distributions but the calculations are time consuming. The two proposed methods may be used as complementary approaches to optimize cutting conditions and drill geometry
Lion, Jean-Marie. « Etude des hypersurfaces pfaffiennes ». Dijon, 1991. http://www.theses.fr/1991DIJOS028.
Texte intégralThuillier, Amaury. « Théorie du potentiel sur les courbes en géométrie analytique non archimédienne : applications à la théorie d'Arakelov ». Phd thesis, Université Rennes 1, 2005. http://tel.archives-ouvertes.fr/tel-00010990.
Texte intégralYu, Yue Tony. « Premiers pas de la géométrie énumérative non archimédienne ». Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC241.
Texte intégralIn this thesis, we establish the first steps of non-archimedean enumerative geometry. We present several new results in tropical geometry and in Berkovich geometry. Our motivation cornes from the study of mirror symmetry, especially from the non-archimedean approach suggested by Kontsevich-Soibelman. We start by studying tropicalization in a global setting, because the classical setting is not sufficient for our purposes. We prove the generalizec balancing condition in terras of the intersection theory. Then, we pass to curves in families. We construct the moduli space of non-archimedean stable maps, introduce the Kâhler structure, an( establish the non-archimedean Gromov compactness theorem. Concerning the tropicalization of analytic curves in families, we prove the theorem of continuity and polyhedrality. We also include a foundation for higher analytic stacks, and prove analogs of Grauert's theorem and Serre's GAGA theorem. Ail these general theorems converge to a concrete application: the enumeration of holomorphic cylinders in log Calabi-Yau surfaces. This pives rise to new geometric invariants. An explicit computation is given for a del Pezzo surface in detail, which verifies the conjectured wall-crossing formula. Our tools include Berkovich spaces, formai models, étale cohomology, vanishing cycles, intersection theory, Artin's representability criterion, the geometry of stable curves, rigid subanalytic sets, Gromov-Witten theory and infinity categories
Iriarte, Hernán. « Polyhedral, Tropical and Analytic Geometry of Higher Rank ». Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS013.
Texte intégralWith the aim of starting a systematic development of higher rank tropical geometry, we develop a theory of higher rank polyhedral geometry over the ordered ring of generalized dual numbers. We generalize several classical results to this context, including, but not limited to, Fourier-Motzkin Elimination, Farkas' Lemma, the Minkowski-Weyf decomposition and the basic results on the duality theory of cones and the theory of normal fans of polyhedra. We use this theory to endow tropical hypersurfaces of higher rank with the structure of a polyhedral complex over D and show that tropical hypersurfaces of higher rank are dual to layered regular subdivision of their Newton polytope. Moreover, motivated for the theory of Okounkov bodies we give a generalization of the theory of skeleta in non-archimedean analytifications of higher rank over trivially valued fields in which the polyhedral geometry developed appears naturally
Michas, Francois. « Elimination des quantificateurs dans le cadre quasi-analytique ». Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS013/document.
Texte intégralWe associate to every compact polydisk B [belonging to ] Rn an algebra CB of real functions defined in a neighborhood of B. The collection of these algebras is supposed to be closed under several operations, such as composition and partial derivatives. Moreover, if the center of B is the origin, we assume that the algebra of germs at the origin of elements of CB is quasianalytic (it does not contain any flat germ). We define with these functions the collection of C-semianalytic and C-subanalytic sets according to the classical process in real analytic geometry. Our main result is an analogue of Tarski-Seidenberg's usual result for these sets. It says that the sub-C-subanalytic sets may be described by means of equalities and inequalities by terms obtained by composition of elements of the algebras CB, the functions x->^{1/n} and the function x->1/x. It is proved via a model theoretic preparation theorem
Durand, Frédo. « Visibilité tridimensionnelle : étude analytique et applications ». Université Joseph Fourier (Grenoble), 1999. http://tel.archives-ouvertes.fr/tel-00529138.
Texte intégralDartyge, Claire. « Cocycles harmoniques et formes automorphes en caractéristique positive ». Toulouse 3, 1996. http://www.theses.fr/1996TOU30203.
Texte intégralLanduré, Ludovic. « Feuilletages Levi-plats du point de vue des surfeuilletages ». Angers, 2006. http://www.theses.fr/2006ANGE0006.
Texte intégralA Levi-flat foliation is a real foliation of an holomorphic manifold which complex part is an integrable vector bundle in the Frobenius sense. Thus, the leaves of these foliations are foliated by holomorphic manifolds. In order to study this foliations, we introduce the notion of overfoliation. In particular, we said that a Levi-flat foliation is an overfoliation of its complex part. Then, we characterize the existence of an overfoliation in terms of holonomy. We calculate the holonomy of codimension 1 holomorphic foliations admitting an overfoliation. Hence, we classify the real codimension 1 overfoliations of some holomorphic foliations with isolated singularities. With the help of a classification by E. Ghys, we study the codimension 1 Levi-flat foliations on complex torus with holomorphic complex part and at last the real analytic Levi-flat foliations on these manifolds
Michas, François. « Elimination des quantificateurs dans le cadre quasi-analytique ». Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00783864.
Texte intégralGonzález, Pérez Pedro Daniel. « Étude des singularités quasi-ordinaires d'hypersurfaces au moyen de la géométrie torique ». Paris 7, 2002. http://www.theses.fr/2002PA077090.
Texte intégralRipoll, Olivier. « Géométrie des tissus du plan et équations différentielles ». Phd thesis, Université Sciences et Technologies - Bordeaux I, 2005. http://tel.archives-ouvertes.fr/tel-00011928.
Texte intégralPoineau, Jérôme. « Des espaces de Berkovich locaux et globaux ». Habilitation à diriger des recherches, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00871134.
Texte intégralFerreira, Antonio Jorge. « Modèles intègres dérivés et ses applications à l'étude de certains espaces des modules rigides analytiques dérivés ». Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30040.
Texte intégralIn this thesis, we study different aspects of derived k-analytic geometry. Namely, we extend the theory of classical formal models for rigid k-analytic spaces to the derived setting. Having a theory of derived formal models at our disposal we proceed to study certain applications such as the representability of derived Hilbert stack in the derived k-analytic setting. We construct a moduli stack of derived k-adic representations of profinite spaces and prove its geometricity as a derived k-analytic stack. Under certain hypothesis we show the existence of a natural shifted symplectic structure on it. Our main applications is to study pro-étale k-adic local systems on smooth schemes in positive characteristic. Finally, we study at length an analytic analogue (both over the field of complex numbers C and over a non-archimedean field k) of the structured algebraic HKR, proved by Toen and Vezzosi
Porta, Mauro. « Derived analytic geometry ». Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC118.
Texte intégralIn this thesis we extend further the foundations of derived C-analytic geometry proposed by J. Lurie in DAG IX. Moreover, we show that his ideas can be used to develop a theory of derived non-archimdean spaces. Motivations are coming from nonabelian Hodge theory and from mirror symmetry. Among the main results there are generalizations of Grauert theorem and GAGA theorems for derived analytic stacks (including C-analytic orbifolds and analytic analogues of Artin stacks). We extensively study analytic deformation theory, including the analytic cotangent complex and its basic properties. Finally, we obtain an analytic version of Lurie's representability theorem. We use the language of infinity categories throughout the whole thesis
Arroyave, Montoya Myriam Diney. « La pensée géométrique dans la musique écrite occidentale. Un regard analytique sur l'oeuvre de Varèse et Webern ». Paris 8, 2009. http://octaviana.fr/document/156365847#?c=0&m=0&s=0&cv=0.
Texte intégralA space-time analogy was at the base of the construction of the diastematic writing of the Western music. With this type of writing the principles of geometrical construction - order, proportion, regularity, repetition, periodicity, symmetry - become the engine of the musical reasoning. With the diastematic writing, the music faces a fundamental problem: the rational construction of time. The characteristics of the line - divisibility, homogeneity, local continuity - were progressively assigned to time. The music offers the Western reasoning a objective, linear, one-dimensional, causal and directed time. This time allowed the experience of succession, simultaneity and permanence. By using a system of lines and points as a “reference frame” the music was able to address question of the movement. In addition, this referential system allowed the articulation of two heterogeneous measurements such as the intensity and the extensity, the continuity and discontinuity, the diversity and the similarity. Consequently, starting from a dynamic of separation, ordering and formalization of the sensitive qualities of the sound phenomenon, inside the partition took place an evolutionary process that allowed the emergence of the musical dimensions. With the analysis of the musical work of Weber and Varese we wanted to show the tensions, which agitated the music of the XX century and that touched the sphere of the geometrical reasoning. These tensions concerned the time, the form, the movement, and the orientation of the reference frame, the concept of sound, and the timbre as fusion of dimensions
Grivaux, Julien. « Quelques problèmes de géométrie complexe et presque complexe ». Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00460334.
Texte intégralGandon, Sebastien. « Russell et la question des fondements. Etudes d'histoire et de philosophie des mathématiques au tournant du xxe siècle ». Habilitation à diriger des recherches, Université Blaise Pascal - Clermont-Ferrand II, 2009. http://tel.archives-ouvertes.fr/tel-00782161.
Texte intégralGirand, Arnaud. « Équations d'isomonodromie, solutions algébriques et dynamique ». Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S042/document.
Texte intégralWe call isomonodromic deformation any family of logarithmic flat connections over a punctured sphere having the same monodromy representation up to global conjugacy. These objects are parametrised by the solutions of a particular family of partial differential equations called Garnier systems, which are equivalent to the Painlevé VI equations in the four punctured case. The purpose of this thesis is to construct new algebraic solutions of these systems in the five punctured case. First, we give a classification of algebraic isomonodromic deformations obtained by restricting to lines some logarithmic flat connection over the complex projective plane whose singular locus is a quintic curve. We obtain two new families of algebraic solutions of the associated Garnier system. In a second part, we use the fact that any algebraic isomonodromic deformation corresponds to a finite orbit under the mapping class group action on the character variety of the five punctured sphere to obtain new examples of such orbits. We do this by using Katz's middle convolution on representations of free groups. Finally, we give a partial generalisation of this procedure in the case of a twice punctured complex torus
Giez, Justine. « Effets de charge et de géométrie sur le bruit d'interaction rotor-rotor des doublets d'hélices contra-rotatives ». Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEC005.
Texte intégralThe development of alternative propeller systems to turbojets is a main issue for research in the current context of aeronautical transport. Counter rotating open rotors are a candidate solution because they allow reduction of fuel consumption and gas emission. However, noise emissions are still a challenge for these types of configuration, in particular because they cannot benefit from the nacelle and the liners currently used in turbojet. The understanding of acoustic sources and their prediction is necessary in order to be able to reduce noise emission in the near future. Flows in an open-rotor are complex, in particular for the downstream propeller which is the subject of this approach.This work based on a numerical, experimental and analytical study and takes part in the ADOPSYS chair between Safran Aircraft Engines and l’Ecole Centrale de Lyon. This PhD has two main goals. The first one is to complete an experimental study in order to elucidate the behavior of the flow on a swept airfoil and the resulting acoustics, with a possibly developing leading-edge vortex. The measurements will be a data base for further comparison with analytical prediction. The second objective of the PhD consists in developing a semi-analytical modeling of the noise emitted by an airfoil in response to an incoming perturbation, taking into account the loading and geometry effects. A numerical study of a full counter-rotating system was used as a basis for designing the investigated airfoil. The latter was designed so that a leading-edge vortex could be formed on the surface for some angles of attack. The mock-up was then tested in an anechoic wind tunnel of Ecole Centrale de Lyon for various sets of parameters. Flow visualization and wall-pressure measurements indicated the presence of the leading-edge vortex for some angles of attack. The far-field measurements indicated three acoustic regimes, which can be associated with three behaviors of the leading-edge vortex. Source localization measurements corroborate these observations. Analytical predictions of the noise emitted by the airfoil and based on Amiet’s model were also performed. Firstly, the sweep angle is taken into account in the model. Secondly it is applied to the studied airfoil. A better match of the results is found when the sweep is considered, in particular in the perpendicular directions. The model in then extended in order to include the wall-junction. This part is exploratory and should be further developed. Finally, a complementary experimental investigation of the impingement of periodic wakes on the airfoil has been performed, using a system made of rotating bars, mimics true wake interactions. The measurements suggest that the leading-edge vortex has a quasi-steady behavior
Mouze, Augustin. « Anneaux de séries formelles à croissance contrôlée ». Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2000. http://tel.archives-ouvertes.fr/tel-00080323.
Texte intégralformelles en $s$ variables dont la croissance des coefficients est contrôlée par la suite $M.$ Sous de faibles hypothèses sur $M,$ on obtient, tout d'abord, des théorèmes de composition. On apporte, par exemple, une réponse à la question suivante. Etant donnée une application $F$ dans $(\Gamma_M)^{s},$ si ${\cal A}\circ F$ appartient à $\Gamma_M,$ à quelle classe $\Gamma_N$ la
série ${\cal A}$ appartient-elle? On établit ensuite quelques propriétés algébriques de ces anneaux. On montre qu'étant donné un bon ordre sur $\bkN^{s},$ on peut diviser dans $\Gamma_M$ toute série
par une famille finie $f_1,\dots,f_p$ telle que les quotients et le reste appartiennent encore à $\Gamma_M.$ Cela permet d'aborder des problèmes
comme la division modulo un idéal, la noetherianité ou la platitude.
On obtient aussi des théorèmes de préparation du type Malgrange.
On étend également le célèbre théorème d'approximation d'Artin.
Corcuff, Marie-Pascale. « Penser l'espace et les formes : l’apport des opérations effectuées dans l’analyse (géographie) et la production (architecture) d’espace et de formes à la définition et à la conceptualisation des notions d’espace et de forme (géométrie) ». Rennes 2, 2007. http://tel.archives-ouvertes.fr/tel-00204573/fr/.
Texte intégralStarting from the definition of any space as a perceptive continuum, and after having introduced the crucial notion of dimension, form is considered as what enables our perception of space, by setting a cut (boundary) in the space of displacements. Conceptual and material operations dealing with forms, operations which are common to mankind as a whole, but are most often performed by geographers and architects, lead to the fondamental concepts of geometry. Yet these concepts, which have effictively governed our conception of space and forfis for centuries, are unhelpful to handle some forms, especially many natural forms. Operations must be replaced by processes, the essential princip les of which are the notions of iteration and attractor. Generative processes yield new concepts, like self-similarity and fractal dimension, which elaborate without contradiction the classical geometrical concepts. Such pro cesses (IFS, L-systems, cellular automata), carriéd out in the digital space, show how simple and deterministic rules may lead to complex and sometimes unpredictable, though specific, forms. They offer new possibilities for analysis and for invention of forms in geography as well as in architecture, and contribute to teach a different way of looking upon space and forms
Karray, Mohamed Kadhem. « Evaluation analytique des performanes des réseaux sans-fil par un processus de Markov spatial prenant en compte leur géométrie, leur dynamique et leurs algorithmes de contrôle ». Phd thesis, Télécom ParisTech, 2007. http://pastel.archives-ouvertes.fr/pastel-00003009.
Texte intégralMaronne, Sébastien. « La théorie des courbes et des équations dans la géométrie cartésienne : 1637-1661 ». Paris 7, 2007. http://www.theses.fr/2007PA070061.
Texte intégralIn this thesis, we study three topics which appeared central to us in the Cartesian Geometry: the Pappus' problem, the problem of tangents and normals, and a problem of gnomonic known under the name of Problema Astronomicum. By "Cartesian Geometry", we understand the corpus formed not only by the Geometry, published in 1637, but also by the Cartesian Correspondence and the two Latin editions directed by Frans van Schooten, published respectively in 1649 and 1659-1661. We study the genesis of the theory of geometrical curves defined by algebraic equations in particular through the controversies which appear in the Cartesian correspondence: the controversy with Roberval about the Pappus' problem, the controversy with Fermat about tangents, and the controversy with Stampioen about the Problema astronomicum. We would thus like to show that the Geometry of the Correspondence constitutes a mean term between the Geometry of 1637 and the Latin editions of 1649 and 1659-1661, sheding light on stakes and difficulties of the creation process of the algebraic curve as object. Moreover, we examine Fermat's method for tangents and Descartes' method for normals, by referring them to a common matrix formed by Apollonius' Conics more precisely, Book I and Book V devoted to a theory of minimal straight lines
Bureaux, Julien. « Méthodes probabilistes pour l'étude asymptotique des partitions entières et de la géométrie convexe discrète ». Thesis, Paris 10, 2015. http://www.theses.fr/2015PA100160/document.
Texte intégralThis thesis consists of several works dealing with the enumeration and the asymptotic behaviour of combinatorial structures related to integer partitions. A first work concerns partitions of large bipartite integers, which are a bidimensional generalization of integer partitions. Asymptotic formulæ are obtained in the critical regime where one of the numbers is of the order of magnitude of the square of the other number, and beyond this critical regime. This completes the results established in the fifties by Auluck, Nanda, and Wright. The second work deals with lattice convex chains in the plane. In a statistical model introduced by Sinaï, an exact integral representation of the partition function is given. This leads to an asymptotic formula for the number of chains joining two distant points, which involves the non trivial zeros of the Riemann zeta function. A detailed combinatorial analysis of convex chains is presented. It makes it possible to prove the existence of a limit shape for random convex chains with few vertices, answering an open question of Vershik. A third work focuses on lattice zonotopes in higher dimensions. An asymptotic equality is given for the logarithm of the number of zonotopes contained in a convex cone and such that the endings of the zonotope are fixed. A law of large numbers is established and the limit shape is characterized by the Laplace transform of the cone
Davy, Damien. « Spécialisation du pseudo-groupe de Malgrange et irréductibilité ». Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S098/document.
Texte intégralThe Malgrange pseudogroup of a vector field on a variety is the sub-pro-variety of the jet space of local biholomorphisms of this variety obtained by taking the Zariski closure of the flow of the vector field. A second-order ordinary differential equation defines a vector field on a variety of dimension 3. The differential type of the Malgrange pseudogroup of this one is at most 2. A second-order ordinary differential equation is said to be irreductible if its general solutions can not be expressed using solutions of algebraic equations, linear differential equations or differential equations of order 1. If the differential type of the Malgrange pseudogroup of a second-order differential equation is exactly 2 then the latter is irreductible. We give several definitions of the Malgrange pseudogroup of a vector field which are equivalent to the original definition given by Bernard Malgrange. The definition of the first paragraph leads us to apply a semi-continuity theorem of the dimension of the Zariski closure of the leaves of a holomorphic foliation given by Philippe Bonnet. We obtain the following result about the ordinary differential equations which depend on parameters. If the differential type of the Malgrange pseudogroup of the equation specialized in one value of parameters is exactly two then it will be the same for the Malgrange pseudogroup of the equation specialized in a general value of parameters. A first application of this result is an other proof of the irreductibility of the Painlevé equations for general value of parameters. A second application is to fully determined the Malgrange pseudogroups of this equations for general value of parameters. The definitions of the Malgrange pseudogroup of a vector field and the specialisation results can be adapted the q-difference equations. By applying this results to the discret Painlevé equations, we fully determined the Malgrange pseudogroup of the latters for general value of parameters
Trélat, Emmanuel. « Etude asymptotique et transcendance de la fonctionvaleur en contrôle optimal. Catégorie log-exp en géométrie sous-Riemannienne dans le cas Martinet ». Phd thesis, Université de Bourgogne, 2000. http://tel.archives-ouvertes.fr/tel-00086511.
Texte intégraltrajectoires anormales en théorie du contrôle optimal.
Après avoir rappelé quelques résultats fondamentaux en contrôle
optimal, on étudie l'optimalité des
anormales pour des systèmes affines mono-entrée avec contrainte
sur le contrôle, d'abord pour le problème du temps optimal, puis
pour un coût quelconque à temps final fixé ou non.
On étend cette théorie aux
systèmes sous-Riemanniens de rang 2, montrant qu'on se ramène
à un système affine du type précédent.
Ces résultats montrent que,
sous des conditions générales, une trajectoire anormale est
\it{isolée} parmi toutes les solutions du système ayant les mêmes
conditions aux limites, et donc \it{localement optimale}, jusqu'à
un premier point dit \it{conjugué} que l'on peut caractériser.
On s'intéresse ensuite
au comportement asymptotique et à la
régularité de la fonction valeur associée à un système affine
analytique avec un coût quadratique. On montre que, en
l'absence de trajectoire
anormale minimisante, la fonction valeur est
\it{sous-analytique et continue}. S'il existe une anormale
minimisante, on sort de la catégorie sous-analytique en général,
notamment en géométrie sous-Riemannienne. La présence d'une
anormale minimisante est responsable de la \it{non-propreté} de
l'application exponentielle, ce qui provoque un phénomène de
\it{tangence} des ensembles de niveaux de la fonction valeur par
rapport à la direction anormale. Dans le cas affine mono-entrée
ou sous-Riemannien de rang 2, on décrit précisément ce
contact, et on en déduit une partition de la
sphère sous-Riemannienne au voisinage de l'anormale
en deux secteurs appelés \it{secteur
$L^\infty$} et \it{secteur $L^2$}.\\
La question de transcendance est étudiée dans le cas
sous-Riemannien de Martinet où la distribution est
$\Delta=\rm{Ker }(dz-\f{y^2}{2}dx)$. On montre que
pour une métrique générale graduée d'ordre $0$~:
$g=(1+\alpha y)^2dx^2+(1+\beta x+\gamma y)^2dy^2$,
les sphères de petit rayon
\it{ne sont pas sous-analytiques}. Dans le cas général
intégrable où $g=a(y)dx^2+c(y)dy^2$, avec $a$ et $c$ analytiques,
les sphères de Martinet appartiennent à la
\it{catégorie log-exp}.
Belotto, Da Silva André Ricardo. « Resolution of singularities in foliated spaces ». Phd thesis, Université de Haute Alsace - Mulhouse, 2013. http://tel.archives-ouvertes.fr/tel-00909798.
Texte intégralDeschamps, Guillaume. « Espaces twistoriels et structures complexes exotiques ». Phd thesis, Université Rennes 1, 2005. http://tel.archives-ouvertes.fr/tel-00011091.
Texte intégralLe, Gal Olivier. « Modèle complétude des structures o-minimales polynomialement bornées ». Phd thesis, Université Rennes 1, 2006. http://tel.archives-ouvertes.fr/tel-00127811.
Texte intégralCette thèse montre un théorème du complémentaire explicite pour les
structures o-minimales polynomialement bornées, ce qui équivault à la modèle-complétude en théorie des modèles.
En 1968, Gabrielov montre un théorème du complémentaire pour
les sous-analytiques globaux, qui en implique la o-minimalité. Il améliore ce résultat en 96, avec un théorème explicite. Une généralisation de celui-ci est présentée ici.
Par des arguments de valuation dus à Lojaciewicz et à Miller, des propriétés de quasi-analycité sont exhibées, qui permettent d'adapter le schéma classique des preuves de modèle-complétude. Ce résultat permet de mieux comprendre la façon dont sont générées les structures o-minimales et donne un langage réduit sur lequel une structure polynomialement bornée est modèle-complète.
Lorenat, Jemma. « "Die Freude an der Gestalt" : méthodes, figures et pratiques de la géométrie au début du dix-neuvième siècle ». Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066079/document.
Texte intégralThe standard history of nineteenth century geometry began with Jean Victor Poncelet's contributions which then spread to Germany alongside an opposition between Julius Plücker, an analytic geometer, and Jakob Steiner, a synthetic geometer. Our questions centre on how geometers distinguished methods, when opposition arose, in what ways geometry disseminated from Poncelet to Plücker and Steiner, and whether this geometry was "modern'' as claimed.We first examine Poncelet's argument that within pure geometry the figure was never lost from view, while it could be obscured by the calculations of algebra. Our case study reveals visual attention within constructive problem solving, regardless of method. Further, geometers manipulated and represented figures through textual descriptions and coordinate equations. We also consider the debates involved as a medium for communicating geometry in which Poncelet and Gergonne in particular developed strategies for introducing new geometry to a conservative audience. We then turn to Plücker and Steiner. Through comparing their common research, we find that Plücker practiced a "pure analytic geometry'' that avoided calculation, while Steiner admired "synthetic geometry'' because of its organic unity. These qualities contradict usual descriptions of analytic geometry as computational or synthetic geometry as ad-hoc.Finally, we study contemporary French books on geometry and show that their methodological divide was grounded in student prerequisites, where "modern'' implied the use of algebra. By contrast, research publications exhibited evolving forms of geometry that evaded dichotomous categorization.The standard history of nineteenth century geometry began with Jean Victor Poncelet's contributions which then spread to Germany alongside an opposition between Julius Plücker, an analytic geometer, and Jakob Steiner, a synthetic geometer. Our questions centre on how geometers distinguished methods, when opposition arose, in what ways geometry disseminated from Poncelet to Plücker and Steiner, and whether this geometry was "modern'' as claimed.We first examine Poncelet's argument that within pure geometry the figure was never lost from view, while it could be obscured by the calculations of algebra. Our case study reveals visual attention within constructive problem solving, regardless of method. Further, geometers manipulated and represented figures through textual descriptions and coordinate equations. We also consider the debates involved as a medium for communicating geometry in which Poncelet and Gergonne in particular developed strategies for introducing new geometry to a conservative audience. We then turn to Plücker and Steiner. Through comparing their common research, we find that Plücker practiced a "pure analytic geometry'' that avoided calculation, while Steiner admired "synthetic geometry'' because of its organic unity. These qualities contradict usual descriptions of analytic geometry as computational or synthetic geometry as ad-hoc.Finally, we study contemporary French books on geometry and show that their methodological divide was grounded in student prerequisites, where "modern'' implied the use of algebra. By contrast, research publications exhibited evolving forms of geometry that evaded dichotomous categorization
Nguyen, Xuan Viet Nhan. « Structure métrique et géométrie des ensembles définissables dans des structures o-minimales ». Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4742/document.
Texte intégralThe thesis focus on study geometric properties of definable sets in o-minimal structures and its applications. There are three main results presented in this thesis. The first is a geometric proof of the existence of Whitney (a) and (b)-regular stratifications of definable sets. The result was initially proved by T. L. Loi in 1994 by using another method. The second is a proof of existence of Lipschitz stratifications (in the sense of Mostowski) of definable sets in a polynomially bounded o-minimal structure. This is a generalization of Parusinski's 1994 result for subanalytic sets. The third result is about the continuity of of variations of integral geometry called local Lipschitz Killing curvatures which were introduced by A. Bernig and L. Broker in 2002. We prove that Lipschitz Killing curvatures are continuous along strata of Whiney stratifications of definable sets in a polynomially bounded o-minimal structure. Moreover, if the stratifications are (w)-regular the Lipspchitz Killing curvatures are locally Lipschitz
Alberti, Lionel. « Propriétés Quantitatives des Singularités des Variétés Algébriques Réelles ». Phd thesis, Nice, 2008. http://www.theses.fr/2008NICE4064.
Texte intégralSection 2 explains a subdivision procedure triangulating an algebraic plane curve. The mathematical tools are the topological degree, alias Gauss's application, the representation of polynomials in the Bernstein basis, all of it wrapped up in a subdivision very fast and certified subdivision method. Section 3 presents a quantitative theory for measuring transversality to a semi-algebraic map (not necessarily smooth). Stem from it: A quantitative version of Thom-Mather's topological triviality theorem, A ``metrically stable'' version of the local conic structure theorem and of the existence of a ``Milnor tube'' around strata. An triangulation algorithm based on Voronoi partitions (not completely implementable because the effective estimation of transversality is not completely detailed)Section 4 presents a bound on the generic number of connected components in an affine section of a real analytic germ in terms of the multiplicity and of the dimension of the ambient space. These two parameters are not always enough to bound the number of connected components. The result is thus proved under some conditions which are shown to be minimal
Fichou, Goulwen. « Nombres de Betti virtuels des ensembles symétriques par arcs et équivalence de Nash après éclatements ». Phd thesis, Université d'Angers, 2003. http://tel.archives-ouvertes.fr/tel-00004279.
Texte intégralEloy, Anton. « Classification et géométrie des équations aux q-différences : étude globale de q-Painlevé, classification non isoformelle et Stokes à pentes arbitraires ». Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30223/document.
Texte intégralThis thesis falls within the context of global and local geometric classification of q-difference equations. In a first part we study the global behaviour of some systems derived from q-Painlevé equations and introduced by Murata. We do so by constructing a Riemann-Hilbert-Birkhoff correspondence between such systems and their connexion matrices. In a second part we work on local classification by providing a construction of an equivariant vector bundle over the space of all formal classes with two slopes, the fibre over a formal class being the space of its isoformal analytic classes. As the action of the group of automorphisms of the graded module arises naturally when we study this bundle, we take an interest in the study of the space of analytic classes, which is the space of isoformal analytic classes modulo this action. We propose a first approach of such a classification by using toric varieties. In a third part we construct q-Stokes, i.e. meromorphic solutions of systems, in the context of systems with one non-integral slope and one equal to zero, this by using q-Borel and q-Laplace transforms
Kazemipour, Alireza. « Contribution à l'étude du couplage entre antennes, application à la compatibilité électromagnétique et à la conception d'antennes et de réseaux d'antennes ». Paris, ENST, 2003. http://www.theses.fr/2002ENST0029.
Texte intégralJunger, Damien. « Cohomologies p-adiques et espaces de Rapoport-Zink ». Thesis, Lyon, 2020. https://tel.archives-ouvertes.fr/tel-03172041.
Texte intégralThis thesis studies the geometry and the cohomology of the Drinfeld symmetric space and its coverings. It has been shown that the supercuspidal part of the l-adic cohomology of this spaces provides a geometric realization of the local Langlands and the Jacquet-Langlands correspondence. Following the methods in the thesis of Wang Hoaran, we establish the same correspondances for the De Rham cohomology (forgetting the action of the Weil group) for the first covering. For that matter, we need to generalize a result of Grosse-Klönne on the De Rham cohomology of analytic spaces admitting a semi-stable model.We also need some informations on the level 0. In particular, we compute the invertible functions on the Drinfeld space. Indeed, we have stronger result where we compute the whole analytic cohomology on the sheaf of invertible function (all these calculations are done in the more general context of hyperplan arrangement). This allow us to give an explicit equation for the first covering essential for the computation of De Rham cohomology