Sommaire
Littérature scientifique sur le sujet « Géométrie riemannienne et barycentrique »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Géométrie riemannienne et barycentrique ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Géométrie riemannienne et barycentrique"
Cordero-Erausquin, Dario. « Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne ». Séminaire de théorie spectrale et géométrie 22 (2004) : 125–52. http://dx.doi.org/10.5802/tsg.349.
Texte intégralBonnard, Bernard, et Monique Chyba. « Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet ». ESAIM : Control, Optimisation and Calculus of Variations 4 (1999) : 245–334. http://dx.doi.org/10.1051/cocv:1999111.
Texte intégralThèses sur le sujet "Géométrie riemannienne et barycentrique"
Maignant, Elodie. « Plongements barycentriques pour l'apprentissage géométrique de variétés : application aux formes et graphes ». Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4096.
Texte intégralAn MRI image has over 60,000 pixels. The largest known human protein consists of around 30,000 amino acids. We call such data high-dimensional. In practice, most high-dimensional data is high-dimensional only artificially. For example, of all the images that could be randomly generated by coloring 256 x 256 pixels, only a very small subset would resemble an MRI image of a human brain. This is known as the intrinsic dimension of such data. Therefore, learning high-dimensional data is often synonymous with dimensionality reduction. There are numerous methods for reducing the dimension of a dataset, the most recent of which can be classified according to two approaches.A first approach known as manifold learning or non-linear dimensionality reduction is based on the observation that some of the physical laws behind the data we observe are non-linear. In this case, trying to explain the intrinsic dimension of a dataset with a linear model is sometimes unrealistic. Instead, manifold learning methods assume a locally linear model.Moreover, with the emergence of statistical shape analysis, there has been a growing awareness that many types of data are naturally invariant to certain symmetries (rotations, reparametrizations, permutations...). Such properties are directly mirrored in the intrinsic dimension of such data. These invariances cannot be faithfully transcribed by Euclidean geometry. There is therefore a growing interest in modeling such data using finer structures such as Riemannian manifolds. A second recent approach to dimension reduction consists then in generalizing existing methods to non-Euclidean data. This is known as geometric learning.In order to combine both geometric learning and manifold learning, we investigated the method called locally linear embedding, which has the specificity of being based on the notion of barycenter, a notion a priori defined in Euclidean spaces but which generalizes to Riemannian manifolds. In fact, the method called barycentric subspace analysis, which is one of those generalizing principal component analysis to Riemannian manifolds, is based on this notion as well. Here we rephrase both methods under the new notion of barycentric embeddings. Essentially, barycentric embeddings inherit the structure of most linear and non-linear dimension reduction methods, but rely on a (locally) barycentric -- affine -- model rather than a linear one.The core of our work lies in the analysis of these methods, both on a theoretical and practical level. In particular, we address the application of barycentric embeddings to two important examples in geometric learning: shapes and graphs. In addition to practical implementation issues, each of these examples raises its own theoretical questions, mostly related to the geometry of quotient spaces. In particular, we highlight that compared to standard dimension reduction methods in graph analysis, barycentric embeddings stand out for their better interpretability. In parallel with these examples, we characterize the geometry of locally barycentric embeddings, which generalize the projection computed by locally linear embedding. Finally, algorithms for geometric manifold learning, novel in their approach, complete this work
Niang, Athoumane. « Sur quelques problèmes en géométrie équiaffine et en géométrie semi-riemannienne ». Montpellier 2, 2005. http://www.theses.fr/2005MON20043.
Texte intégralCharuel, Xavier. « Courbes et hypersurfaces nulles en géométrie pseudo-Riemannienne ». Nancy 1, 2003. http://docnum.univ-lorraine.fr/public/SCD_T_2003_0005_CHARUEL.pdf.
Texte intégralIn this thesis, we study "degenerate" (or "null") submanifolds of pseudo-riemannian manifolds, for which the restriction of the pseudo-riemannian structure of the ambiant manifold degenerate on the submanifold. In the first part, we build a generalized Frénet 's frame in pseudo-riemannian manifolds. In the second part, we generalize our construction to other situations, such as symplectic manifolds, or pseudo-kaehlerian manifolds. Finally, in the last part of this thesis, we study totally geodesic degenerate hypersurfaces in pseudo-riemannian manifolds. We find invariants relative to the induced structure on the hypersurface, and use them to build local coordinate systems adapted to the geometry of the hypersurface
Charlot, Grégoire. « Géométrie sous-riemannienne de contact et de quasi-contact ». Dijon, 2001. http://www.theses.fr/2001DIJOS030.
Texte intégralHumbert, Emmanuel. « Inégalités optimales de types Nash et Sobolev en géométrie riemannienne ». Paris 6, 2000. http://www.theses.fr/2000PA066218.
Texte intégralRoth, Julien. « Rigidité des hypersurfaces en géométrie riemannienne et spinorielle : Aspect extrinsèque et intrinsèque ». Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00120756.
Texte intégralJanin, Gabriel. « Contrôle optimal et applications au transfert d'orbite et à la géométrie presque-riemannienne ». Phd thesis, Université de Bourgogne, 2010. http://tel.archives-ouvertes.fr/tel-00633197.
Texte intégralFrancoeur, Dominik. « Géométrie de Cartan et pré-géodésiques de type lumière ». Mémoire, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/5297.
Texte intégralArguillere, Sylvain. « Géométrie sous-riemannienne en dimension infinie et applications à l'analyse mathématique des formes ». Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066144/document.
Texte intégralThis manuscript is dedicated to the study of infinite dimensional sub-Riemannian geometry and its applications to shape analysis using dieomorphic deformations. The first part is a detailed summary of our work, while the second part combines the articles we wrote during the last three years. We first extend the framework of sub- Riemannian geometry to infinite dimensions, establishing conditions that ensure the existence of a Hamiltonian geodesic flow. We then apply these results to strong right- invariant sub-Riemannian structures on the group of diffeomorphisms of a manifold. We then define rigorously the abstract concept shape spaces. A shape space is a Banach manifold on which the group of diffeomorphisms of a manifold acts in a way that satisfy certain properties. We then define several sub-Riemannian structures on these shape spaces using this action, and study these. Finally, we add constraints to the possible deformations, and formulate shape analysis problems in an infinite dimensional control theoritic framework. We prove a Pontryagin maximum principle adapted to this context, establishing the constrained geodesic equations. Algorithms for fin- ding optimal deformations are then developped, supported by numerical simulations. These algorithms extend and unify previously established methods in shape analysis
Choné, Philippe. « Étude de quelques problèmes variationnels intervenant en géométrie riemannienne et en économie mathématique ». Toulouse 1, 1999. http://www.theses.fr/1999TOU10020.
Texte intégralIn the first part of this thesis, we consider a critical point u of a conformally invariant functional on a two-dimensional domain. We show that if u is a priori assumed to be bounded, then u is smooth up to the boundary of the domain. As an application, we establish a regularity result for weak solutions to the equation of surfaces of prescribed mean curvature in a three dimensional compact Riemannian manifold. The variational problems studied in the second part are motivated by economic issues, namely non-linear pricing by a monopolist or a duopolist. The problem consists in maximizing a functional over the cone of convex functions. We give a sufficient condition for the convexity constraint to be active. This condition does hold in many common situations in economics. Typically, in a two-dimensional problem, there exists an area where the rank of the hessian of the solution is 1. We write the Euler equation of the problem and derive the + sweeping conditions. We explain how to use these conditions to compute the solution. This method, however, requires some prior knowledge of the solution. We therefore study the numerical approximation of the problem. We show how to apply some simple finite-elements methods to the problem. There is, however, a strong theoretical obstruction to the convergence of these methods (in dimension greater than 2). Finally we consider duopoly models that involve non-concave and non-coercive functionals. We study best reply maps and Nash equilibria in these models
Chapitres de livres sur le sujet "Géométrie riemannienne et barycentrique"
Jedrzejewski, Franck. « Deleuze et la Géométrie Riemannienne : Une Topologie des Multiplicités ». Dans From Riemann to Differential Geometry and Relativity, 311–28. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60039-0_10.
Texte intégral« 8 Géométrie riemannienne ». Dans Variétés différentielles, physique et invariants topologiques, 175–210. EDP Sciences, 2023. http://dx.doi.org/10.1051/978-2-7598-3143-2.c009.
Texte intégral« 3 La géométrie riemannienne et les variétés différentielles ». Dans Le temps des neurones, 71–80. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2271-3-004.
Texte intégral« 3 La géométrie riemannienne et les variétés différentielles ». Dans Le temps des neurones, 71–80. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2271-3.c004.
Texte intégral