Littérature scientifique sur le sujet « Geometry, Algebraic »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Geometry, Algebraic ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Geometry, Algebraic"

1

Hacon, Christopher, Daniel Huybrechts, Yujiro Kawamata, and Bernd Siebert. "Algebraic Geometry." Oberwolfach Reports 12, no. 1 (2015): 783–836. http://dx.doi.org/10.4171/owr/2015/15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

PLOTKIN, BORIS. "SOME RESULTS AND PROBLEMS RELATED TO UNIVERSAL ALGEBRAIC GEOMETRY." International Journal of Algebra and Computation 17, no. 05n06 (August 2007): 1133–64. http://dx.doi.org/10.1142/s0218196707003986.

Texte intégral
Résumé :
In universal algebraic geometry (UAG), some primary notions of classical algebraic geometry are applied to an arbitrary variety of algebras Θ and an arbitrary algebra H ∈ Θ. We consider an algebraic geometry in Θ over the distinguished algebra H and we also analyze H from the point of view of its geometric properties. This insight leads to a system of new notions and stimulates a number of new problems. They are new with respect to algebra, algebraic geometry and even with respect to the classical algebraic geometry. In our approach, there are two main aspects: the first one is a study of the
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tyurin, N. A. "Algebraic Lagrangian geometry: three geometric observations." Izvestiya: Mathematics 69, no. 1 (February 28, 2005): 177–90. http://dx.doi.org/10.1070/im2005v069n01abeh000527.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Voisin, Claire. "Algebraic Geometry versus Kähler geometry." Milan Journal of Mathematics 78, no. 1 (March 17, 2010): 85–116. http://dx.doi.org/10.1007/s00032-010-0113-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Toën, Bertrand. "Derived algebraic geometry." EMS Surveys in Mathematical Sciences 1, no. 2 (2014): 153–245. http://dx.doi.org/10.4171/emss/4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Debarre, Olivier, David Eisenbud, Gavril Farkas, and Ravi Vakil. "Classical Algebraic Geometry." Oberwolfach Reports 18, no. 2 (August 24, 2022): 1519–77. http://dx.doi.org/10.4171/owr/2021/29.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Darke, Ian, and M. Reid. "Undergraduate Algebraic Geometry." Mathematical Gazette 73, no. 466 (December 1989): 351. http://dx.doi.org/10.2307/3619332.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Debarre, Olivier, David Eisenbud, Frank-Olaf Schreyer, and Ravi Vakil. "Classical Algebraic Geometry." Oberwolfach Reports 9, no. 2 (2012): 1845–93. http://dx.doi.org/10.4171/owr/2012/30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Catanese, Fabrizio, Christopher Hacon, Yujiro Kawamata, and Bernd Siebert. "Complex Algebraic Geometry." Oberwolfach Reports 10, no. 2 (2013): 1563–627. http://dx.doi.org/10.4171/owr/2013/27.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Debarre, Olivier, David Eisenbud, Gavril Farkas, and Ravi Vakil. "Classical Algebraic Geometry." Oberwolfach Reports 11, no. 3 (2014): 1695–745. http://dx.doi.org/10.4171/owr/2014/31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Geometry, Algebraic"

1

Miscione, Steven. "Loop algebras and algebraic geometry." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116115.

Texte intégral
Résumé :
This thesis primarily discusses the results of two papers, [Hu] and [HaHu]. The first is an overview of algebraic-geometric techniques for integrable systems in which the AKS theorem is proven. Under certain conditions, this theorem asserts the commutatvity and (potential) non-triviality of the Hamiltonian flow of Ad*-invariant functions once they're restricted to subalgebras. This theorem is applied to the case of coadjoint orbits on loop algebras, identifying the flow with a spectral curve and a line bundle via the Lax equation. These results play an important role in the discussion of [HaHu
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lurie, Jacob 1977. "Derived algebraic geometry." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30144.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2004.<br>Includes bibliographical references (p. 191-193).<br>The purpose of this document is to establish the foundations for a theory of derived algebraic geometry based upon simplicial commutative rings. We define derived versions of schemes, algebraic spaces, and algebraic stacks. Our main result is a derived analogue of Artin's representability theorem, which provides a precise criteria for the representability of a moduli functor by geometric objects of these types.<br>by Jacob Lurie.<br>Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Balchin, Scott Lewis. "Augmented homotopical algebraic geometry." Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/40623.

Texte intégral
Résumé :
In this thesis we are interested in extending the theory of homotopical algebraic geometry, which itself is a homotopification of classical algebraic geometry. We introduce the concept of augmentation categories, which are a class of generalised Reedy categories. An augmentation category is a category which has enough structure that we can mirror the simplicial constructions which make up the theory of homotopical algebraic geometry. In particular, we construct a Quillen model structure on their presheaf categories, and introduce the concept of augmented hypercovers to define a local model str
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rennie, Adam Charles. "Noncommutative spin geometry." Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dos, Santos João Pedro Pinto. "Fundamental groups in algebraic geometry." Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/252015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Slaatsveen, Anna Aarstrand. "Decoding of Algebraic Geometry Codes." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13729.

Texte intégral
Résumé :
Codes derived from algebraic curves are called algebraic geometry (AG) codes. They provide a way to correct errors which occur during transmission of information. This paper will concentrate on the decoding of algebraic geometry codes, in other words, how to find errors. We begin with a brief overview of some classical result in algebra as well as the definition of algebraic geometry codes. Then the theory of cyclic codes and BCH codes will be presented. We discuss the problem of finding the shortest linear feedback shift register (LFSR) which generates a given finite sequence. A decoding algo
Styles APA, Harvard, Vancouver, ISO, etc.
7

Birkar, Caucher. "Topics in modern algebraic geometry." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421475.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lundman, Anders. "Topics in Combinatorial Algebraic Geometry." Doctoral thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176878.

Texte intégral
Résumé :
This thesis consists of six papers in algebraic geometry –all of which have close connections to combinatorics. In Paper A we consider complete smooth toric embeddings X ↪ P^N such that for a fixed positive integer k the t-th osculating space at every point has maximal dimension if and only if t ≤ k. Our main result is that this assumption is equivalent to that X ↪ P^N is associated to a Cayley polytope of order k having every edge of length at least k. This result generalizes an earlier characterisation by David Perkinson. In addition we prove that the above assumptions are equivalent to requ
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hu, Jiawei. "Partial actions in algebraic geometry." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/273459.

Texte intégral
Résumé :
We introduce geometrically partial comodules over coalgebras in monoidal categories, as an alternative notion to the notion of partial action and coaction of Hopf algebras introduced by Caenepeel and Janssen. We show that our new notion suits better if one wants to describe phenomena of partial actions in algebraic geometry. We show that under mild conditions, the category of geometric partial comodules is complete and cocomplete and the category of partial comodules over a Hopf algebra is lax monoidal. We develop a Hopf-Galois theory for geometric partial coactions to illustrate that our new
Styles APA, Harvard, Vancouver, ISO, etc.
10

Garcia-Puente, Luis David. "Algebraic Geometry of Bayesian Networks." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11133.

Texte intégral
Résumé :
We develop the necessary theory in algebraic geometry to place Bayesian networks into the realm of algebraic statistics. This allows us to create an algebraic geometry--statistics dictionary. In particular, we study the algebraic varieties defined by the conditional independence statements of Bayesian networks. A complete algebraic classification, in terms of primary decomposition of polynomial ideals, is given for Bayesian networks on at most five random variables. Hidden variables are related to the geometry of higher secant varieties. Moreover, a complete algebraic classification, in ter
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Geometry, Algebraic"

1

Cox, David A. Using algebraic geometry. New York: Springer, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cox, David A. Using algebraic geometry. 2nd ed. New York: Springer, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lefschetz, Solomon. Algebraic geometry. Mineola, N.Y: Dover Publications, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Harris, Joe. Algebraic Geometry. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2189-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sommese, Andrew John, Aldo Biancofiore, and Elvira Laura Livorni, eds. Algebraic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0083328.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Abramovich, D., A. Bertram, L. Katzarkov, R. Pandharipande, and M. Thaddeus, eds. Algebraic Geometry. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/pspum/080.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Abramovich, D., A. Bertram, L. Katzarkov, R. Pandharipande, and M. Thaddeus, eds. Algebraic Geometry. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/pspum/080.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Keum, JongHae, and Shigeyuki Kondō, eds. Algebraic Geometry. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/conm/422.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kurke, H., and J. H. M. Steenbrink, eds. Algebraic Geometry. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0685-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Perrin, Daniel. Algebraic Geometry. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-056-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Geometry, Algebraic"

1

Stillwell, John. "Algebraic Geometry." In Undergraduate Texts in Mathematics, 85–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55193-3_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wells, Raymond O. "Algebraic Geometry." In Differential and Complex Geometry: Origins, Abstractions and Embeddings, 5–16. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58184-2_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mazzola, Guerino. "Algebraic Geometry." In The Topos of Music IV: Roots, 1411–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64495-0_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Suzuki, Joe. "Algebraic Geometry." In WAIC and WBIC with Python Stan, 153–73. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3841-4_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wallach, Nolan R. "Algebraic Geometry." In Universitext, 3–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65907-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Elliott, David L. "Algebraic Geometry." In Bilinear Control Systems, 247–50. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1023/b101451_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Beshaj, Lubjana. "Algebraic Geometry." In Mathematics in Cyber Research, 97–132. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429354649-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Suzuki, Joe. "Algebraic Geometry." In WAIC and WBIC with R Stan, 151–70. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3838-4_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Harris, Joe. "Algebraic Groups." In Algebraic Geometry, 114–29. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2189-8_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bogomolov, F. A., and A. N. Landia. "2-Cocycles and Azumaya algebras under birational transformations of algebraic schemes." In Algebraic Geometry, 1–5. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0685-3_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Geometry, Algebraic"

1

Sharir, Micha. "Algebraic Techniques in Geometry." In ISSAC '18: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3208976.3209028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Roan, Shi-shyr. "Algebraic Geometry and Physics." In Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

LÊ, DŨNG TRÁNG, and BERNARD TEISSIER. "GEOMETRY OF CHARACTERISTIC VARIETIES." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Borghesi, Simone. "Cohomology operations and algebraic geometry." In International Conference in Homotopy Theory. Mathematical Sciences Publishers, 2007. http://dx.doi.org/10.2140/gtm.2007.10.75.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

BIRKAR, CAUCHER. "BIRATIONAL GEOMETRY OF ALGEBRAIC VARIETIES." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Soleev, A., and N. Soleeva. "Power geometry and algebraic equations." In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013): Proceedings of the International Conference on Mathematical Sciences and Statistics 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4823880.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Daniyarova, E., A. Myasnikov, and V. Remeslennikov. "Unification theorems in algebraic geometry." In A Festschrift in Honor of Anthony Gaglione. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793416_0007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Barczik, Günter, Oliver Labs, and Daniel Lordick. "Algebraic Geometry in Architectural Design." In eCAADe 2009: Computation: The New Realm of Architectural Design. eCAADe, 2009. http://dx.doi.org/10.52842/conf.ecaade.2009.455.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wampler, Charles W. "Numerical algebraic geometry and kinematics." In ISSAC07: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/1277500.1277506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cariñena, J. F., A. Ibort, G. Marmo, G. Morandi, Fernando Etayo, Mario Fioravanti, and Rafael Santamaría. "Geometrical description of algebraic structures: Applications to Quantum Mechanics." In GEOMETRY AND PHYSICS: XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146238.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Geometry, Algebraic"

1

Bashelor, Andrew Clark. Enumerative Algebraic Geometry: Counting Conics. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada437184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Stiller, Peter. Algebraic Geometry and Computational Algebraic Geometry for Image Database Indexing, Image Recognition, And Computer Vision. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada384588.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Thompson, David C., Joseph Maurice Rojas, and Philippe Pierre Pebay. Computational algebraic geometry for statistical modeling FY09Q2 progress. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/984161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bates, Daniel J., Daniel A. Brake, Wenrui Hao, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler. Real Numerical Algebraic Geometry: Finding All Real Solutions of a Polynomial System. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada597283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rabier, Patrick J., and Werner C. Rheinboldt. A Geometric Treatment of Implicit Differential-Algebraic Equations. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236991.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Watts, Paul. Differential geometry on Hopf algebras and quantum groups. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/89507.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yau, Stephen S. PDE, Differential Geometric and Algebraic Methods in Nonlinear Filtering. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada260967.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yau, Stephen S. PDE, Differential Geometric and Algebraic Methods for Nonlinear Filtering. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada310330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mundy, Joseph L. Representation and Recognition with Algebraic Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada282926.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mundy, Joseph L. Representation and Recognition with Algebraic Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada271395.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!