Littérature scientifique sur le sujet « Geometry Mathematics »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Geometry Mathematics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Geometry Mathematics"

1

Murtianto, Yanuar Hery, Sutrisno Sutrisno, Nizaruddin Nizaruddin et Muhtarom Muhtarom. « EFFECT OF LEARNING USING MATHEMATICA SOFTWARE TOWARD MATHEMATICAL ABSTRACTION ABILITY, MOTIVATION, AND INDEPENDENCE OF STUDENTS IN ANALYTIC GEOMETRY ». Infinity Journal 8, no 2 (30 septembre 2019) : 219. http://dx.doi.org/10.22460/infinity.v8i2.p219-228.

Texte intégral
Résumé :
Rapid development of technology for the past two decades has greatly influenced mathematic learning system. Mathematica software is one of the most advanced technology that helps learn math especially in Geometry. Therefore this research aims at investigating the effectiveness of analytic geometry learning by using Mathematica software on the mathematical abstraction ability, motivation, and independence of students. This research is a quantitative research with quasi-experimental method. The independent variable is learning media, meanwhile the dependent variables are students’ mathematical abstraction ability, motivation, and independence in learning. The population in this research was the third semester students of mathematics education program and the sample was selected using cluster random sampling. The samples of this research consisted of two distinct classes, with one class as the experimental class was treated using Mathematica software and the other is the control class was treated without using it. Data analyzed using multivariate, particularly Hotelling’s T2 test. The research findings indicated that learning using Mathematica software resulted in better mathematical abstraction ability, motivation, and independence of students, than that conventional learning in analytic geometry subject.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Manouchehri, Azita, Mary C. Enderson et Lyle A. Pugnucco. « Exploring Geometry with Technology ». Mathematics Teaching in the Middle School 3, no 6 (mars 1998) : 436–42. http://dx.doi.org/10.5951/mtms.3.6.0436.

Texte intégral
Résumé :
The study of geometry in grades 5-8 should incorporate opportunities for students to engage in exploring and analyzing geometric shapes to conjecture about geometric relationships through data collection and model construction, according to the Curriculum and Evaluation Standards for School Mathematics (NCTM 1989). In this fashion, students will develop an intuitive understanding of geometric concepts and learn to reason formally and informally. Moreover, it is hoped that through such processes, students will formulate relevant definitions and theorems. The Standards document also encourages the use of computer technologies in middle school mathematics instruction. This suggestion was based on the assumption that interactive environments provided by appropriate geometry software have the potential to foster students' movement from concrete expetiences with mathematics to more formal levels of abstractions, nurture students' conjectuting spirit, and improve their mathematical thinking. Although the NCTM's visions for the geometry curriculum and for methods of teaching geometry in the middle levels are certainly attractive, many teachers are concerned about what software is useful for the middle school population, how such software can be used in instruction. what issues are associated with their use, and what the consequences are of learning and teaching mathematics within such environments.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Robichaux, Rebecca R., et Paulette R. Rodrigue. « Using Origami to Promote Geometric Communication ». Mathematics Teaching in the Middle School 9, no 4 (décembre 2003) : 222–29. http://dx.doi.org/10.5951/mtms.9.4.0222.

Texte intégral
Résumé :
Rigami has been used frequently in teaching geometry to promote the development of spatial sense; to make multicultural connections with mathematical ideas; and to provide students with a visual representation of such geometric concepts as shape, properties of shapes, congruence, similarity, and symmetry. Such activities meet the Geometry Standard (NCTM 2000), which states that students should be engaged in activities that allow them to “analyze characteristics and properties of twoand three-dimensional geometric shapes and develop mathematical arguments about geometric relationships” and to “use visualization, spatial reasoning, and geometric modeling to solve problems” (p. 41). This article begins with an explanation of the importance of communication in the mathematics classroom and then describes a middle school mathematics lesson that uses origami to meet both the Geometry Standard as well as the Communication Standard.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Huse, Vanessa Evans, Nancy Larson Bluemel et Rhonda Harris Taylor. « Making Connections : From Paper to Pop-Up Books ». Teaching Children Mathematics 1, no 1 (septembre 1994) : 14–17. http://dx.doi.org/10.5951/tcm.1.1.0014.

Texte intégral
Résumé :
The goal of the elementary mathematics program is to create an environment that supports the active exploration of mathematical ideas while demonstrating the connections between mathematics and everyday life. Many elementary students have limited instruction in geometry, even though this subject is an essential element in the mathematics curriculum. Students with a background in geometry may be able to rec ite geometric facts but often cannot employ the information to visualize practical solutions to problems. The ideas that foiJow describe geometry-related activities that use an inexpensive manipulative, paper, to create a pop-up card.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lin, Qin, et Yumei Chen. « Deepening the Understanding of Mathematics with Geometric Intuition ». Journal of Contemporary Educational Research 5, no 6 (30 juin 2021) : 36–40. http://dx.doi.org/10.26689/jcer.v5i6.2214.

Texte intégral
Résumé :
Geometric intuition is one of the core concepts introduced by the new mathematical curriculum standards. It aims to use intuition and intuitive materials to deepen the understanding of mathematics in mathematical cognition activities. It does not only play a role in the learning of “graphics and geometry,’ but its’ irreplaceable role also involves the whole process of mathematics education. Therefore, if teachers can skillfully use geometric intuition in the teaching process, classroom efficiency will be greatly improved.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bright, George W. « Teaching Mathematics with Technology : Logo and Geometry ». Arithmetic Teacher 36, no 5 (janvier 1989) : 32–34. http://dx.doi.org/10.5951/at.36.5.0032.

Texte intégral
Résumé :
Interest in teaching geometry through Logo graphics is increasing. It seems reasonable to expect that geometry understandings will improve through exposure to such a visual environment, but the research has not given clear-cut evidence that the improvement is automatic. However, in two recent studies (Kelly, Kelly, and Miller 1986–87; Noss 1987) Logo showed a possible advantage in improving students' understanding of selected geometric concepts. This month's activities illustrate a way that teachers can give students explicit help in focusing on important geometric ideas.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Carroll, William M. « Polygon Capture : A Geometry Game ». Mathematics Teaching in the Middle School 4, no 2 (octobre 1998) : 90–94. http://dx.doi.org/10.5951/mtms.4.2.0090.

Texte intégral
Résumé :
The curriculum and evaluation standards for School Mathematics (NCTM 1989) calls for an increased role for geometry in the primary and middle school curricula. An important mathematical strand in its own right, geometry also provides opportunities to promote and assess mathematical communication, reasoning, and problem-solving skills. Unfortunately, many students lack the vocabulary and the conceptual understanding needed to desctibe geometric relationships. This atiicle describes a game, Capture the Polygons, that I have designed to help middle school students think about geometric properties and the relationships among them. A version of the game has been tested in firth- and sixth-grade classes as part of the field test of Fifth Grade Everyday Mathematics (Bell et al. 1995). Observations of classes playing the game, as well as feedback from their teachers, indicate that students find the game challenging but fun. Depending on the background of the students, it can be played at different levels of difficulty.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Robertson, Stuart P. « Getting Students Actively Involved in Geometry ». Teaching Children Mathematics 5, no 9 (mai 1999) : 526–29. http://dx.doi.org/10.5951/tcm.5.9.0526.

Texte intégral
Résumé :
For the past three years, I have begun my school year by having students write a “mathematical autobiography.” We talk about what an autobiography is and what a mathematical autobiography might be like. The students write about their interactions with mathematics, how they feel about it, and what they have done in mathematics. Their writings often reveal that students view mathematics as computation. They write about addition, subtraction, multiplication, and division; which operations they like to do and which ones they do not like. One activity that I use to address their one-sided view of mathematics is a geometry unit, which gives another view of mathematics and highlights how geometry surrounds students every day.
Styles APA, Harvard, Vancouver, ISO, etc.
9

McClintock, Ruth. « Animating Geometry with Flexigons ». Mathematics Teacher 87, no 8 (novembre 1994) : 602–6. http://dx.doi.org/10.5951/mt.87.8.0602.

Texte intégral
Résumé :
Viewing mathematics as communication is the second standard listed for all grade levels in the NCTM's Curriculum and Evaluation Standards for School Mathematics (1989). This emphasis underscores the need for nurturing language skills that enable children to translate nonverbal awareness into words. One way to initiate discussion about mathematical concepts is to use physical models and manipulatives. Standard 4 of the Professional Standards for Teaching Mathematics (NCTM 1991) addresses the need for tools to enhance discourse. The flexigon is a simple and inexpensive conversation piece that helps students make geometric discoveries and find language to share their ideas.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hangül, Tuğba, et Ozlem Cezikturk. « A practice for using Geogebra of pre-service mathematics teachers’ mathematical thinking process ». New Trends and Issues Proceedings on Humanities and Social Sciences 7, no 1 (2 juillet 2020) : 102–16. http://dx.doi.org/10.18844/prosoc.v7i1.4872.

Texte intégral
Résumé :
We aim to examine the pre-service mathematics teachers' mathematical problem-solving processes by using dynamic geometry software and to determine their evaluations based on experiences in this process. The design is document analysis, one of the qualitative research approaches. In the fall semester of the 2019–2020 academic year, a three-problem task was carried out in a classroom environment where everyone could use geogebra individually. A total of 65 pre-service mathematics teachers enrolled in the course of educational technology. This task includes questions that they would use, their knowledge of basic geometric concepts to construct geometrical relations and evaluations related to this process. Besides the activity papers of the prospective teachers, geogebra files were also examined. The result is pre-service mathematics teachers who are thought to have a certain level of mathematical background are found to have incorrect/incomplete information even in the most basic geometric concepts and difficulties with regard to generalisation. Keywords: Dynamic geometry, geogebra, instructional technologies, mathematical thinking, teacher education.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Geometry Mathematics"

1

Miller, Richard A. « Geometric algebra| An introduction with applications in Euclidean and conformal geometry ». Thesis, San Jose State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1552269.

Texte intégral
Résumé :

This thesis presents an introduction to geometric algebra for the uninitiated. It contains examples of how some of the more traditional topics of mathematics can be reexpressed in terms of geometric algebra along with proofs of several important theorems from geometry. We introduce the conformal model. This is a current topic among researchers in geometric algebra as it is finding wide applications in computer graphics and robotics. The appendices provide a list of some of the notational conventions used in the literature, a reference list of formulas and identities used in geometric algebra along with some of their derivations, and a glossary of terms.

Styles APA, Harvard, Vancouver, ISO, etc.
2

Lurie, Jacob 1977. « Derived algebraic geometry ». Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30144.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2004.
Includes bibliographical references (p. 191-193).
The purpose of this document is to establish the foundations for a theory of derived algebraic geometry based upon simplicial commutative rings. We define derived versions of schemes, algebraic spaces, and algebraic stacks. Our main result is a derived analogue of Artin's representability theorem, which provides a precise criteria for the representability of a moduli functor by geometric objects of these types.
by Jacob Lurie.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bunch, Eric. « K-Theory in categorical geometry ». Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20350.

Texte intégral
Résumé :
Doctor of Philosophy
Department of Mathematics
Zongzhu Lin
In the endeavor to study noncommutative algebraic geometry, Alex Rosenberg defined in [13] the spectrum of an Abelian category. This spectrum generalizes the prime spectrum of a commutative ring in the sense that the spectrum of the Abelian category R − mod is homeomorphic to the prime spectrum of R. This spectrum can be seen as the beginning of “categorical geometry”, and was used in [15] to study noncommutative algebriac geometry. In this thesis, we are concerned with geometries extending beyond traditional algebraic geometry coming from the algebraic structure of rings. We consider monoids in a monoidal category as the appropriate generalization of rings–rings being monoids in the monoidal category of Abelian groups. Drawing inspiration from the definition of the spectrum of an Abelian category in [13], and the exploration of it in [15], we define the spectrum of a monoidal category, which we will call the monoidal spectrum. We prove a descent condition which is the mathematical formalization of the statment “R − mod is the category of quasi-coherent sheaves on the monoidal spectrum of R − mod”. In addition, we prove a functoriality condidition for the spectrum, and show that for a commutative Noetherian ring, the monoidal spectrum of R − mod is homeomorphic to the prime spectrum of the ring R. In [1], Paul Balmer defined the prime tensor ideal spectrum of a tensor triangulated cat- gory; this can be thought of as the beginning of “tensor triangulated categorical geometry”. This definition is very transparent and digestible, and is the inspiration for the definition in this thesis of the prime tensor ideal spectrum of an monoidal Abelian category. It it shown that for a polynomial identity ring R such that the catgory R − mod is monoidal Abelian, the prime tensor ideal spectrum is homeomorphic to the prime ideal spectrum.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dodds, Peter Sheridan 1969. « Geometry of river networks ». Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9177.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Segarra, Escandón Jaime Rodrigo. « Pre-service teachers' mathematics teaching beliefs and mathematical content knowledge ». Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/671686.

Texte intégral
Résumé :
L’estudi del coneixement matemàtic i les creences de l’eficàcia de l’ensenyament de les matemàtiques en la formació inicial dels futurs mestres és fonamental, ja que influencia el rendiment acadèmic dels seus estudiants. L’objectiu d’aquesta tesi és estudiar tant el coneixement matemàtic inicial dels futurs mestres com també les seves creences sobre l’eficàcia matemàtica i la seva actitud envers les matemàtiques. Per a complir amb l’objectiu, es realitzen vàries investigacions. Primer, s’estudien els coneixements inicials de nombres i geometria dels estudiants del primer curs del Grau d’Educació Primària a la Universitat Rovira i Virgili (URV). En segon lloc, s’estudien les creences de l’eficàcia de l’ensenyament de les matemàtiques dels futurs mestres durant el grau. En tercer lloc, en aquesta Tesi es compara l’autoeficàcia i l’expectativa de resultats de l’ensenyament de les matemàtiques de futurs mestres, mestres novells i mestres experimentats. En quart lloc, s’estudia la relació entre les creences de l’ensenyament de les matemàtiques, l’actitud envers les matemàtiques i el rendiment acadèmic dels futurs mestres. En cinquè lloc, s’estudia la influència dels factors experiència docent, nivell d’educació i nivell d’ensenyament sobre les creences de l’eficàcia de l’ensenyament de les matemàtiques en mestres en actiu. Finalment, es compara l’autoeficàcia de l’ensenyament de les matemàtiques entre els estudiants del quart any del grau de mestres a la Universitat del Azuay i a la URV. Els resultats d’aquesta Tesi ofereixen informació potencialment important sobre el coneixement matemàtic, les creences, l’autoeficàcia de l’ensenyament de les matemàtiques i l’actitud envers les matemàtiques dels futurs mestres i dels mestres en actiu. Aquests resultats poden ajudar a desenvolupar polítiques adients a l’hora de dissenyar plans d’estudis i també assessorar als professors dels graus de mestre en les institucions d’educació superior.
El estudio del conocimiento matemático y las creencias de la eficacia de la enseñanza de las matemáticas en la formación inicial de los futuros maestros es fundamental, ya que influye en el rendimiento académico de los estudiantes. El objetivo de esta tesis es estudiar tanto el conocimiento matemático inicial de los futuros maestros como sus creencias sobre la eficacia matemática y su actitud hacia las matemáticas. Para cumplir con el objetivo se realiza varias investigaciones. Primero, se estudia los conocimientos iniciales de números y geometría de los estudiantes de primer año del Grado de Educación Primaria en la Universidad Rovira y Virgili (URV). En segundo lugar, se estudia las creencias de la eficacia de la enseñanza de las matemáticas de los futuros maestros a lo largo del grado. Tercero, esta Tesis compara la autoeficacia y la expectativa de resultados de la enseñanza de las matemáticas de futuros maestros, maestros novatos y maestros experimentados. Cuarto, se estudia la relación entre las creencias de la enseñanza de las matemáticas, la actitud hacia las matemáticas y su rendimiento académico. Quinto, se estudia la influencia de los factores experiencia docente, nivel de educación y nivel de enseñanza, sobre las creencias de la eficacia de la enseñanza de las matemáticas en maestros en servicio. Finalmente, se compara la autoeficacia de la enseñanza de las matemáticas entre los estudiantes de cuarto año del grado de maestro en la Universidad del Azuay y en la URV. Los resultados de esta Tesis ofrecen información potencialmente importante sobre el conocimiento matemático, las creencias, la autoeficacia de la enseñanza de las matemáticas y la actitud hacia las matemáticas de los futuros maestros y maestros en servicio. Estos resultados pueden ayudar a desarrollar políticas adecuadas para diseñar planes de estudios y también asesorar a los profesores de los grados de maestro en las instituciones de educación superior.
The study of mathematical content knowledge and teachers’ mathematics teaching beliefs of the pre-service teachers is fundamental, since it influences the academic performance of students. The objective of this Thesis is to study the initial mathematical knowledge of pre-service teachers and also their teachers’ mathematics teaching beliefs and their attitude towards mathematics. To meet the objective, various investigations are carried out. First, the initial knowledge of numbers and geometry of first-year students of the primary education degree at the Rovira and Virgili University (URV) is studied. Second, pre-service teachers’ mathematics teaching beliefs are studied throughout the grade. Third, this Thesis compares the self-efficacy and the expectation of results of the teaching of mathematics of pre-service teachers, novice in-service teachers and experienced in-service teachers. Fourth, the relationship between the teachers’ mathematics teaching beliefs, the attitude towards mathematics and their academic performance is studied. Fifth, the influence of the factors teaching level factor and level of training on the teachers’ mathematics teaching beliefs of in-service teachers is studied. Finally, the self-efficacy of mathematics teaching of fourth-year students at the Azuay University and at the URV is compared. The results of this Thesis offer potentially important information on the mathematical knowledge, beliefs, self-efficacy of mathematics teaching and the attitude towards mathematics of pre-service teachers and in-service teachers. These results can help develop policies for curriculum developers and teaching professors at institutes of higher education.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Armstrong, John. « Almost-Kahler geometry ». Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Markham, Sarah. « Hypercomplex hyperbolic geometry ». Thesis, Durham University, 2003. http://etheses.dur.ac.uk/3698/.

Texte intégral
Résumé :
The rank one symmetric spaces of non-compact type are the real, complex, quaternionic and octonionic hyperbolic spaces. Real hyperbolic geometry is widely studied complex hyperbolic geometry less so, whilst quaternionic hyperbolic geometry is still in its infancy. The purpose of this thesis is to investigate the conditions for discrete group action in quaternionic and octonionic hyperbolic 2-spaces and their geometric consequences, in the octonionic case, in terms of lower bounds on the volumes of non-compact manifolds. We will also explore the eigenvalue problem for the 3 x 3 octonionic matrices germane to the Jordan algebra model of the octonionic hyperbolic plane. In Chapters One and Two we concentrate on discreteness conditions in quaternionic hyperbolic 2-space. In Chapter One we develop a quaternionic Jørgensen's inequality for non-elementary groups of isometries of quaternionic hyperbolic 2-space generated by two elements, one of which is either loxodromic or boundary elliptic. In Chapter Two we give a generalisation of Shimizu's Lemma to groups of isometries of quaternionic hyperbolic 2-space containing a screw-parabolic element. In Chapter Three we present the Jordan algebra model of the octonionic hyperbolic plane and develop a generalisation of Shimizu's Lemma to groups of isometries of octonionic hyperbolic 2-space containing a parabolic map. We use this result to determine estimates of lower bounds on the volumes of non-compact closed octonionic 2-manifolds. In Chapter Four we construct an octonionic Jørgensen's inequality for non-elementary groups of isometries of octonionic hyperbolic 2-space generated by two elements, one of which is loxodromic. In Chapter Five we solve the real eigenvalue problem Xv = λv, for the 3 x 3 ɸ-Hermitian matrices, X, of the Jordan algebra model of the octonionic hyperbolic plane. Finally, in Chapter Six we consider the embedding of collars about real geodesies in complex hyperbohc 2-space, quaternionic hyperbolic 2-space and octonionic hyperbolic 2-space.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Marshall, T. H. (Timothy Hamilton). « Hyperbolic Geometry and Reflection Groups ». Thesis, University of Auckland, 1994. http://hdl.handle.net/2292/2140.

Texte intégral
Résumé :
The n-dimensional pseudospheres are the surfaces in Rn+l given by the equations x12+x22+...+xk2-xk+12-...-xn+12=1(1 ≤ k ≤ n+1). The cases k=l, n+1 give, respectively a pair of hyperboloids, and the ordinary n-sphere. In the first chapter we consider the pseudospheres as surfaces h En+1,k, where Em,k=Rk x (iR)m-k, and investigate their geometry in terms of the linear algebra of these spaces. The main objects of investigation are finite sequences of hyperplanes in a pseudosphere. To each such sequence we associate a square symmetric matrix, the Gram matrix, which gives information about angle and incidence properties of the hyperplanes. We find when a given matrix is the Gram matrix of some sequence of hyperplanes, and when a sequence is determined up to isometry by its Gram matrix. We also consider subspaces of pseudospheres and projections onto them. This leads to an n-dimensional cosine rule for spherical and hyperbolic simplices. In the second chapter we derive integral formulae for the volume of an n-dimensional spherical or hyperbolic simplex, both in terms of its dihedral angles and its edge lengths. For the regular simplex with common edge length γ we then derive power series for the volume, both in u = sinγ/2, and in γ itself, and discuss some of the properties of the coefficients. In obtaining these series we encounter an interesting family of entire functions, Rn(p) (n a nonnegative integer and pεC). We derive a functional equation relating Rn(p) and Rn-1(p). Finally we classify, up to isometry, all tetrahedra with one or more vertices truncated, for which the dihedral angles along the edges formed by the truncatons. are all π/2, and the remaining dihedral angles are all sub-multiples of π. We show how to find the volumes of these polyhedra, and find presentations and small generating sets for the orientation-preserving subgroups of their reflection groups. For particular families of these groups, we find low index torsion free subgroups, and construct associated manifolds and manifolds with boundary In particular, we find a sequence of manifolds with totally geodesic boundary of genus, g≥2, which we conjecture to be of least volume among such manifolds.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Baer, Lawrence H. « Numerical aspects of computational geometry ». Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22507.

Texte intégral
Résumé :
This thesis is concerned with the numerical issues resulting from the implementation of geometric algorithms on finite precision digital computers. From an examination of the general problem and a survey of previous research, it appears that the central problem of numerical computational geometry is how to deal with degenerate and nearly degenerate input. For some applications, such as solid modeling, degeneracy is often intended but we cannot always ascertain its existence using finite precision. For other applications, degenerate input is unwanted but nearly degenerate input is unavoidable. Near degeneracy is associated with ill-conditioning of the input and can lead to a serious loss of accuracy and program failure. These observations lead us to a discussion of problem condition in the context of computational geometry. We use the Voronoi diagram construction problem as a case study and show that problem condition can also play a role in algorithm design.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sam, Steven V. « Free resolutions, combinatorics, and geometry ». Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73178.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 71-72).
Boij-Söderberg theory is the study of two cones: the first is the cone of graded Betti tables over a polynomial ring, and the second is the cone of cohomology tables of coherent sheaves over projective space. Each cone has a triangulation induced from a certain partial order. Our first result gives a module-theoretic interpretation of this poset structure. The study of the cone of cohomology tables over an arbitrary polarized projective variety is closely related to the existence of an Ulrich sheaf, and our second result shows that such sheaves exist on the class of Schubert degeneracy loci. Finally, we consider the problem of classifying the possible ranks of Betti numbers for modules over a regular local ring.
by Steven V Sam.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Geometry Mathematics"

1

Fenn, Roger. Geometry. London : Springer, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Brylinski, J. L. Advances in Geometry. Boston, MA : Birkhäuser Boston, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Brannan, D. A. Geometry. 2e éd. Cambridge : Cambridge University Press, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Slavin, Stephen L. Geometry. New York : John Wiley & Sons, Ltd., 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Education, Ontario Ministry of. Mathematics, geometry : Junior Division. Toronto : Ontario Ministry of Education, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Education, Ontario Ministry of. Mathematics, Junior Division : Geometry. S.l : s.n, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

1942-, Frisk Peter D., dir. Essential mathematics with geometry. 3e éd. Pacific Grove, Calif : Brooks/Cole Pub. Co., 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

1942-, Frisk Peter D., dir. Essential mathematics with geometry. 2e éd. Pacific Grove, Calif : Brooks/Cole, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gustafson, R. David. Essential mathematics with geometry. Pacific Grove, Calif : Brooks/Cole Pub. Co., 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Beneš, Viktor. Stochastic geometry : Selected topics. Boston : Kluwer Academic Publishers, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Geometry Mathematics"

1

Holme, Audun. « Arabic Mathematics and Geometry ». Dans Geometry, 173–210. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14441-7_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bronshtein, I. N., K. A. Semendyayev, Gerhard Musiol et Heiner Mühlig. « Geometry ». Dans Handbook of Mathematics, 129–268. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46221-8_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol et Heiner Muehlig. « Geometry ». Dans Handbook of Mathematics, 128–250. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Vince, John. « Geometry Using Geometric Algebra ». Dans Imaginary Mathematics for Computer Science, 229–36. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94637-5_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Motz, Lloyd, et Jefferson Hane Weaver. « Analytic Geometry ». Dans Conquering Mathematics, 201–31. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2774-3_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mordeson, John N., et Premchand S. Nair. « Fuzzy Geometry ». Dans Fuzzy Mathematics, 137–217. Heidelberg : Physica-Verlag HD, 2001. http://dx.doi.org/10.1007/978-3-7908-1808-6_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Barbeau, Edward J. « Geometry ». Dans Problem Books in Mathematics, 133–48. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28106-3_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Soifer, Alexander. « Geometry ». Dans Mathematics as Problem Solving, 45–75. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-74647-0_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mac Lane, Saunders. « Geometry ». Dans Mathematics Form and Function, 61–92. New York, NY : Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4872-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hurlbert, Glenn H. « Geometry ». Dans Undergraduate Texts in Mathematics, 59–72. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79148-7_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Geometry Mathematics"

1

Chandra, Nitish. « Effects of Geometry on Scattering ». Dans Mathematics in Imaging. Washington, D.C. : OSA, 2017. http://dx.doi.org/10.1364/math.2017.mw4c.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Weiss, Pierre. « The geometry of convex regularized inverse problems ». Dans Mathematics in Imaging. Washington, D.C. : OSA, 2018. http://dx.doi.org/10.1364/math.2018.mw2d.5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sameer et Pradeep Kumar Pandey. « Copper differential geometry ». Dans ADVANCEMENTS IN MATHEMATICS AND ITS EMERGING AREAS. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003357.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ochiai, T., J. C. Nacher, Theodore E. Simos, George Psihoyios, Ch Tsitouras et Zacharias Anastassi. « Geometry and Cloaking Devices ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011 : International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636985.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lian, Qin, Jue Wang, Hongzhong Liu et DiChen Li. « Optimal Geometry and Stimulating Mechanism of Deep‐brain Electrode—Role of Electrode Contact Geometry ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS : International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990932.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Coquereaux, R., M. Dubois-Violette et P. Flad. « INFINITE DIMENSIONAL GEOMETRY NON COMMUTATIVE GEOMETRY OPERATOR ALGEBRAS FUNDAMENTAL INTERACTIONS ». Dans First Caribbean Spring School of Mathematics and Theoretical Physics. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814532846.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Roussel, O., M. Renaud et M. Taïx. « Inverse geometry for Kirchhoff elastic rods ». Dans IMA Conference on Mathematics of Robotics. Institute of Mathematics and its Applications, 2015. http://dx.doi.org/10.19124/ima.2015.001.07.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

W. Ker, H., S. M. Ho, M. C. Lee et K. K. Huang. « Factors Associated with Mathematics Achievement : An International Comparative Study ». Dans Annual International Conference on Computational Mathematics, Computational Geometry & Statistics. Global Science and Technology Forum (GSTF), 2012. http://dx.doi.org/10.5176/2251-1911_cmcgs48.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kaufmann, Hannes, et Dieter Schmalstieg. « Mathematics and geometry education with collaborative augmented reality ». Dans ACM SIGGRAPH 2002 conference abstracts and applications. New York, New York, USA : ACM Press, 2002. http://dx.doi.org/10.1145/1242073.1242086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Charpin, J. P. F., Theodore E. Simos, George Psihoyios et Ch Tsitouras. « Spin Coating over a Varying Geometry ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS : International Conference on Numerical Analysis and Applied Mathematics 2009 : Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241371.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Geometry Mathematics"

1

Swetz, Frank J. Sacred Mathematics : Japanese Temple Geometry. Washington, DC : The MAA Mathematical Sciences Digital Library, septembre 2008. http://dx.doi.org/10.4169/loci002864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hoffman, D. [Geometry, analysis, and computation in mathematics and applied science]. Progress report. Office of Scientific and Technical Information (OSTI), février 1994. http://dx.doi.org/10.2172/218245.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kusner, R. B., D. A. Hoffman, P. Norman, F. Pedit, N. Whitaker et D. Oliver. Geometry, analysis, and computation in mathematics and applied sciences. Final report. Office of Scientific and Technical Information (OSTI), décembre 1995. http://dx.doi.org/10.2172/171332.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chen, W. Y. C., et J. D. Louck. Combinatorics, geometry, and mathematical physics. Office of Scientific and Technical Information (OSTI), novembre 1998. http://dx.doi.org/10.2172/674871.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

De Silva, K. N. A mathematical model for optimization of sample geometry for radiation measurements. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1988. http://dx.doi.org/10.4095/122732.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Meisel, L. V. A Mathematica Formulation of Geometric Algebra in 3-Space. Fort Belvoir, VA : Defense Technical Information Center, mars 1995. http://dx.doi.org/10.21236/ada295512.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Liou, Yuei-An. Retrieving Ionospheric Electron Density Distribution With COSMIC Occultations : An Analysis of the Effects of Geometric and Mathematical Delays on TEC Inversions From GPS/MET Occultation Data. Fort Belvoir, VA : Defense Technical Information Center, août 2001. http://dx.doi.org/10.21236/ada627499.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Perdigão, Rui A. P., et Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, novembre 2020. http://dx.doi.org/10.46337/201111.

Texte intégral
Résumé :
Causality and Predictability of Complex Systems pose fundamental challenges even under well-defined structural stochastic-dynamic conditions where the laws of motion and system symmetries are known. However, the edifice of complexity can be profoundly transformed by structural-functional coevolution and non-recurrent elusive mechanisms changing the very same invariants of motion that had been taken for granted. This leads to recurrence collapse and memory loss, precluding the ability of traditional stochastic-dynamic and information-theoretic metrics to provide reliable information about the non-recurrent emergence of fundamental new properties absent from the a priori kinematic geometric and statistical features. Unveiling causal mechanisms and eliciting system dynamic predictability under such challenging conditions is not only a fundamental problem in mathematical and statistical physics, but also one of critical importance to dynamic modelling, risk assessment and decision support e.g. regarding non-recurrent critical transitions and extreme events. In order to address these challenges, generalized metrics in non-ergodic information physics are hereby introduced for unveiling elusive dynamics, causality and predictability of complex dynamical systems undergoing far-from-equilibrium structural-functional coevolution. With these methodological developments at hand, hidden dynamic information is hereby brought out and explicitly quantified even beyond post-critical regime collapse, long after statistical information is lost. The added causal insights and operational predictive value are further highlighted by evaluating the new information metrics among statistically independent variables, where traditional techniques therefore find no information links. Notwithstanding the factorability of the distributions associated to the aforementioned independent variables, synergistic and redundant information are found to emerge from microphysical, event-scale codependencies in far-from-equilibrium nonlinear statistical mechanics. The findings are illustrated to shed light onto fundamental causal mechanisms and unveil elusive dynamic predictability of non-recurrent critical transitions and extreme events across multiscale hydro-climatic problems.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie