Littérature scientifique sur le sujet « GIRK channels »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « GIRK channels ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "GIRK channels"

1

Xu, Yu, Lucas Cantwell, Andrei I. Molosh, et al. "The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents." Journal of Biological Chemistry 295, no. 11 (2020): 3614–34. http://dx.doi.org/10.1074/jbc.ra119.011527.

Texte intégral
Résumé :
G-protein–gated inwardly-rectifying K+ (GIRK) channels are targets of Gi/o-protein–signaling systems that inhibit cell excitability. GIRK channels exist as homotetramers (GIRK2 and GIRK4) or heterotetramers with nonfunctional homomeric subunits (GIRK1 and GIRK3). Although they have been implicated in multiple conditions, the lack of selective GIRK drugs that discriminate among the different GIRK channel subtypes has hampered investigations into their precise physiological relevance and therapeutic potential. Here, we report on a highly-specific, potent, and efficacious activator of brain GIRK1
Styles APA, Harvard, Vancouver, ISO, etc.
2

Müllner, Carmen, Dimitry Vorobiov, Amal Kanti Bera та ін. "Heterologous Facilitation of G Protein-Activated K+ Channels by β-Adrenergic Stimulation via Camp-Dependent Protein Kinase". Journal of General Physiology 115, № 5 (2000): 547–58. http://dx.doi.org/10.1085/jgp.115.5.547.

Texte intégral
Résumé :
To investigate possible effects of adrenergic stimulation on G protein–activated inwardly rectifying K+ channels (GIRK), acetylcholine (ACh)-evoked K+ current, IKACh, was recorded from adult rat atrial cardiomyocytes using the whole cell patch clamp method and a fast perfusion system. The rise time of IKACh was 0.4 ± 0.1 s. When isoproterenol (Iso) was applied simultaneously with ACh, an additional slow component (11.4 ± 3.0 s) appeared, and the amplitude of the elicited IKACh was increased by 22.9 ± 5.4%. Both the slow component of activation and the current increase caused by Iso were abolis
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rosenhouse-Dantsker, Avia. "Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details." Lipid Insights 11 (January 1, 2018): 117863531775407. http://dx.doi.org/10.1177/1178635317754071.

Texte intégral
Résumé :
In recent years, it has become evident that cholesterol plays a direct role in the modulation of a variety of ion channels. In most cases, cholesterol downregulates channel activity. In contrast, our earlier studies have demonstrated that atrial G protein inwardly rectifying potassium (GIRK) channels are upregulated by cholesterol. Recently, we have shown that hippocampal GIRK currents are also upregulated by cholesterol. A combined computational-experimental approach pointed to putative cholesterol-binding sites in the transmembrane domain of the GIRK2 channel, the primary subunit in hippocam
Styles APA, Harvard, Vancouver, ISO, etc.
4

Shankar, Haripriya, Swaminathan Murugappan, Soochong Kim, et al. "Role of G protein–gated inwardly rectifying potassium channels in P2Y12 receptor–mediated platelet functional responses." Blood 104, no. 5 (2004): 1335–43. http://dx.doi.org/10.1182/blood-2004-01-0069.

Texte intégral
Résumé :
Abstract The role of the Gi-coupled platelet P2Y12 receptor in platelet function has been well established. However, the functional effector or effectors contributing directly to αIIbβ3 activation in human platelets has not been delineated. As the P2Y12 receptor has been shown to activate G protein–gated, inwardly rectifying potassium (GIRK) channels, we investigated whether GIRK channels mediate any of the functional responses of the platelet P2Y12 receptor. Western blot analysis revealed that platelets express GIRK1, GIRK2, and GIRK4. In aspirin-treated and washed human platelets, 2 structur
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kuzhikandathil, Eldo V., and Gerry S. Oxford. "Dominant-Negative Mutants Identify a Role for Girk Channels in D3 Dopamine Receptor-Mediated Regulation of Spontaneous Secretory Activity." Journal of General Physiology 115, no. 6 (2000): 697–706. http://dx.doi.org/10.1085/jgp.115.6.697.

Texte intégral
Résumé :
The human D3 dopamine receptor can activate G-protein–coupled inward rectifier potassium channels (GIRKs), inhibit P/Q-type calcium channels, and inhibit spontaneous secretory activity in AtT-20 neuroendocrine cells (Kuzhikandathil, E.V., W. Yu, and G.S. Oxford. 1998. Mol. Cell. Neurosci. 12:390–402; Kuzhikandathil, E.V., and G.S. Oxford. 1999. J. Neurosci. 19:1698–1707). In this study, we evaluate the role of GIRKs in the D3 receptor-mediated inhibition of secretory activity in AtT-20 cells. The absence of selective blockers for GIRKs has precluded a direct test of the hypothesis that they pl
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yamakura, Tomohiro, Joanne M. Lewohl, and R. Adron Harris. "Differential Effects of General Anesthetics on G Protein–coupled Inwardly Rectifying and Other Potassium Channels." Anesthesiology 95, no. 1 (2001): 144–53. http://dx.doi.org/10.1097/00000542-200107000-00025.

Texte intégral
Résumé :
Background General anesthetics differentially affect various families of potassium channels, and some potassium channels are suggested to be potential targets for anesthetics and alcohols. Methods The voltage-gated (ERG1, ELK1, and KCNQ2/3) and inwardly rectifying (GIRK1/2, GIRK1/4, GIRK2, IRK1, and ROMK1) potassium channels were expressed in Xenopus oocytes. Effects of volatile agents [halothane, isoflurane, enflurane, F3 (1-chloro-1,2,2-trifluorocyclobutane), and the structurally related nonimmobilizer F6 (1,2-dichlorohexafluorocyclobutane)], as well as intravenous (pentobarbital, propofol,
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lacin, Emre, Prafulla Aryal, Ian W. Glaaser, et al. "Dynamic role of the tether helix in PIP2-dependent gating of a G protein–gated potassium channel." Journal of General Physiology 149, no. 8 (2017): 799–811. http://dx.doi.org/10.1085/jgp.201711801.

Texte intégral
Résumé :
G protein–gated inwardly rectifying potassium (GIRK) channels control neuronal excitability in the brain and are implicated in several different neurological diseases. The anionic phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) is an essential cofactor for GIRK channel gating, but the precise mechanism by which PIP2 opens GIRK channels remains poorly understood. Previous structural studies have revealed several highly conserved, positively charged residues in the “tether helix” (C-linker) that interact with the negatively charged PIP2. However, these crystal structures of neuronal GI
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shankar, Haripriya, Bryan N. Kahner, Janani Prabhakar, Parth Lakhani, Soochong Kim, and Satya P. Kunapuli. "G-protein–gated inwardly rectifying potassium channels regulate ADP-induced cPLA2 activity in platelets through Src family kinases." Blood 108, no. 9 (2006): 3027–34. http://dx.doi.org/10.1182/blood-2006-03-010330.

Texte intégral
Résumé :
Abstract ADP-induced TXA2 generation requires the costimulation of P2Y1, P2Y12, and the GPIIb/IIIa receptors. Signaling events downstream of the P2Y receptors that contribute to ADP-induced TXA2 generation have not been clearly delineated. In this study, we have investigated the role of G-protein–gated inwardly rectifying potassium channels (GIRKs), a recently identified functional effector for the P2Y12 receptor, in the regulation of ADP-induced TXA2 generation. At 10-μM concentrations, the 2 structurally distinct GIRK channel blockers, SCH23390 and U50488H, caused complete inhibition of ADP-
Styles APA, Harvard, Vancouver, ISO, etc.
9

Best, Tyler K., Richard J. Siarey, and Zygmunt Galdzicki. "Ts65Dn, a Mouse Model of Down Syndrome, Exhibits Increased GABAB-Induced Potassium Current." Journal of Neurophysiology 97, no. 1 (2007): 892–900. http://dx.doi.org/10.1152/jn.00626.2006.

Texte intégral
Résumé :
Down syndrome (DS) is the most common nonheritable cause of mental retardation. DS is the result of the presence of an extra chromosome 21 and its phenotype may be a consequence of overexpressed genes from that chromosome. One such gene is Kcnj6/Girk2, which encodes the G-protein-coupled inward rectifying potassium channel subunit 2 (GIRK2). We have recently shown that the DS mouse model, Ts65Dn, overexpresses GIRK2 throughout the brain and in particular the hippocampus. Here we report that this overexpression leads to a significant increase (∼2-fold) in GABAB-mediated GIRK current in primary
Styles APA, Harvard, Vancouver, ISO, etc.
10

Montandon, Gaspard, Jun Ren, Nicole C. Victoria, et al. "G-protein–gated Inwardly Rectifying Potassium Channels Modulate Respiratory Depression by Opioids." Anesthesiology 124, no. 3 (2016): 641–50. http://dx.doi.org/10.1097/aln.0000000000000984.

Texte intégral
Résumé :
Abstract Background Drugs acting on μ-opioid receptors (MORs) are widely used as analgesics but present side effects including life-threatening respiratory depression. MORs are G-protein–coupled receptors inhibiting neuronal activity through calcium channels, adenylyl cyclase, and/or G-protein–gated inwardly rectifying potassium (GIRK) channels. The pathways underlying MOR-dependent inhibition of rhythmic breathing are unknown. Methods By using a combination of genetic, pharmacological, and physiological tools in rodents in vivo, the authors aimed to identify the role of GIRK channels in MOR-m
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "GIRK channels"

1

Nassirpour, Rounak. "Regulators of neuronal GIRK channels." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3307328.

Texte intégral
Résumé :
Thesis (Ph. D.)--University of California, San Diego, 2008.<br>Title from first page of PDF file (viewed July 11, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Styles APA, Harvard, Vancouver, ISO, etc.
2

ZHANG, Liyan. "Mechanosensitivity of GIRK Channels Depends on Channel-PIP_2 Interactions(RIEM Conference II, 2002)." Research Institute of Environmental Medicine, Nagoya University, 2002. http://hdl.handle.net/2237/2805.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Aryal, Prafulla. "Insights into mechanism of alcohol mediated modulation of GIRK channels." Diss., [La Jolla] : University of California, San Diego, 2010. http://wwwlib.umi.com/cr/ucsd/fullcit?p3390890.

Texte intégral
Résumé :
Thesis (Ph. D.)--University of California, San Diego, 2010.<br>Title from first page of PDF file (viewed Feb. 19, 2010). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jaén, Cristina. "Differential coupling of RGS3s and RGS4 to GPCR-GIRK channel signaling complexes." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001533.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

ZHANG, Liyan, Jong-Kook LEE, and Itsuo KODAMA. "Molecular Mechanisms for Regulation of the G Protein-activated Inwardly Rectifying K^+ (GIRK) Channels by Protein Kinase C." Research Institute of Environmental Medicine, Nagoya University, 2002. http://hdl.handle.net/2237/2791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mahajan, Rahul. "Gβγ acts at an inter-subunit cleft to activate GIRK1 channels". VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/3307.

Texte intégral
Résumé :
Heterotrimeric guanine nucleotide-binding proteins (G-proteins) consist of an alpha subunit (Gα) and the dimeric beta-gamma subunit (Gβγ). The first example of direct cell signaling by Gβγ was the discovery of its role in activating G-protein regulated inwardly rectifying K+ (GIRK) channels which underlie the acetylcholine-induced K+ current responsible for vagal inhibition of heart rate. Published crystal structures have provided important insights into the structures of the G-protein subunits and GIRK channels separately, but co-crystals of the channel and Gβγ together remain elusive and no
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ha, Junghoon. "Hydrogen Sulfide Regulation of Kir Channels." VCU Scholars Compass, 2017. https://scholarscompass.vcu.edu/etd/5204.

Texte intégral
Résumé :
Inwardly rectifying potassium (Kir) channels establish and regulate the resting membrane potential of excitable cells in the heart, brain and other peripheral tissues. Phosphatidylinositol- 4,5-bisphosphate (PIP2) is a key direct activator of ion channels, including Kir channels. Gasotransmitters, such as carbon monoxide (CO), have been reported to regulate the activity of Kir channels by altering channel-PIP2 interactions. We tested, in a model system, the effects and mechanism of action of another important gasotransmitter, hydrogen sulfide (H2S) thought to play a key role in cellular respon
Styles APA, Harvard, Vancouver, ISO, etc.
8

Irie, Tomohiko. "Activation of GIRK channels by muscarinic receptors and group 2 metabotropic glutamate receptors suppresses Golgi cell activity in the cochlear nucleus of mice." Kyoto University, 2008. http://hdl.handle.net/2433/135798.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yang, Chul Ho. "Paired Interactions between Kir channels and Tertiapin-Q." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3183.

Texte intégral
Résumé :
Kir channels serve diverse and important roles throughout the human body and malfunctions of these channels are implicated in various channelopathies. Specific inhibitors for different subtypes of Kir channels are not available. However, Tertiapin-Q (TPNQ), a polypeptide isolated from honey bee venom, differentially inhibits certain subtypes of Kir channels with nanomolar affinity: ROMK1 (Kir1.1) and GIRK1/GIRK4 (Kir3.1/Kir3.4). Modification of TPNQ to increase selectivity for target channels bears great therapeutic potential. The in silico studies based on TPNQ-docked channel models, ROMK1_IR
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jaén, Cristina. "Differential coupling of RGS3s and RGS4 to GPCR-GIRK channel signaling complexes." Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/2571.

Texte intégral
Résumé :
'Regulators of G protein signaling' (RGS proteins) modulate the G proteincycle by enhancing the GTPase activity of Ga subunits. These changesaccelerate the kinetics of ion channel modulation by Gai/o-coupled receptors(GPCRs) such as the G protein-gated inward rectifier K+ (GIRK/Kir3) channel. Myexperiments indicate that a single cerebellar granule (CG) neuron, a cell type thatendogenously expresses GIRK channels is able to express a wide variety ofRGS proteins. I selected two of them, which are widely expressed andtranscriptionally regulated during pathophysiologic conditions, to compare their
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "GIRK channels"

1

Black girl @ The Gay Channel. Full Court Press, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Voskoglou, Theodora. Cloning of the gene for the human GIRK1 inwardly rectifying postassium channel. National Library of Canada, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Slesinger, Paul A., and Kevin Wickman. Structure to Function of G Protein-Gated Inwardly Rectifying (GIRK) Channels. Elsevier Science & Technology Books, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Structure to Function of G Protein-Gated Inwardly Rectifying (GIRK) Channels. Elsevier, 2015. http://dx.doi.org/10.1016/s0074-7742(15)x0005-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

The Girl from the Channel Islands. Thorndike Press Large Print, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

The Girl from the Channel Islands: A Novel. Graydon House, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lecoat, Jenny. The Girl from the Channel Islands: A Novel. Harlequin Audio and Blackstone Publishing, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lecoat, Jenny. The Girl from the Channel Islands: A Novel. Harlequin Audio and Blackstone Publishing, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lecoat, Jenny. The Girl from the Channel Islands: A WWII Novel. Graydon House, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "GIRK channels"

1

Manji, Husseini K., Jorge Quiroz, R. Andrew Chambers, et al. "GIRK Channels." In Encyclopedia of Psychopharmacology. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_1264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Raveh, Adi, Inbal Riven, and Eitan Reuveny. "The Use of FRET Microscopy to Elucidate Steady State Channel Conformational Rearrangements and G Protein Interaction with the GIRK Channels." In Methods in Molecular Biology. Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-526-8_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tipps, Megan E., and Kari J. Buck. "GIRK Channels." In International Review of Neurobiology. Elsevier, 2015. http://dx.doi.org/10.1016/bs.irn.2015.05.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

"GIRK Channels." In Encyclopedia of Psychopharmacology. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36172-2_200526.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

"GIRK Channels." In Encyclopedia of Computational Neuroscience. Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_100240.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mayfield, Jody, Yuri A. Blednov, and R. Adron Harris. "Behavioral and Genetic Evidence for GIRK Channels in the CNS." In International Review of Neurobiology. Elsevier, 2015. http://dx.doi.org/10.1016/bs.irn.2015.05.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Luján, Rafael, and Carolina Aguado. "Localization and Targeting of GIRK Channels in Mammalian Central Neurons." In International Review of Neurobiology. Elsevier, 2015. http://dx.doi.org/10.1016/bs.irn.2015.05.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Doupnik, Craig A., Cristina Jaén, and Qingli Zhang. "Measuring the Modulatory Effects of RGS Proteins on GIRK Channels." In Regulators of G-Protein Signaling, Part A. Elsevier, 2004. http://dx.doi.org/10.1016/s0076-6879(04)89009-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dascal, Nathan, and Uri Kahanovitch. "The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels." In International Review of Neurobiology. Elsevier, 2015. http://dx.doi.org/10.1016/bs.irn.2015.06.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

"GIRK Channel." In Encyclopedia of Pain. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28753-4_200876.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!